MTM
ifourier
inverse Fourier integral transform
Calling Sequence
Parameters
Description
Examples
ifourier(M)
ifourier(M,u)
ifourier(M,v, u)
M
-
array or expression
u
variable expr is transformed with respect to u
v
parameter of transform
The ifourier function applies the inverse Fourier transform to M using the definition
f⁡x=∫−∞∞F⁡w⁢ⅇI⁢x⁢wⅆw2⁢π
The ifourier(M) calling sequence computes the element-wise inverse Fourier transform of M. The result, R, is formed as R[i,j] = ifourier(M[i,j], v, u).
ifourier(F) is the inverse Fourier transform of the scalar F with default independent variable w. If F is not a function of w, then F is assumed to be a function of the independent variable returned by findsym(F,1). By default, the return value is a function of x.
If F = F(x), then ifourier returns a function of t. The integration above proceeds with respect to w.
ifourier(F,u) makes F a function of the variable u instead of the default x. The integration above proceeds with respect to w.
ifourier(F,v,u) takes F to be a function of v instead of the default w. The integration is then with respect to v.
with⁡MTM:
ifourier⁡31+w2
3⁢Heaviside⁡x⁢ⅇ−x2+3⁢ⅇx⁢Heaviside⁡−x2
ifourier⁡31+x2
3⁢Heaviside⁡t⁢ⅇ−t2+3⁢ⅇt⁢Heaviside⁡−t2
ifourier⁡31+w2,s
3⁢Heaviside⁡s⁢ⅇ−s2+3⁢ⅇs⁢Heaviside⁡−s2
ifourier⁡z⋅31+w2,z,t
−3⁢I⁢Dirac⁡1,tw2+1
M≔Matrix⁡31+w2,z⋅31+w2:
ifourier⁡M
3⁢Heaviside⁡x⁢ⅇ−x2+3⁢ⅇx⁢Heaviside⁡−x23⁢z⁢Heaviside⁡x⁢ⅇ−x+ⅇx⁢Heaviside⁡−x2
See Also
inttrans[invfourier]
MTM[exp]
MTM[findsym]
MTM[fourier]
MTM[heaviside]
Download Help Document