ifourier - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


MTM

  

ifourier

  

inverse Fourier integral transform

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ifourier(M)

ifourier(M,u)

ifourier(M,v, u)

Parameters

M

-

array or expression

u

-

variable expr is transformed with respect to u 

v

-

parameter of transform

Description

• 

The ifourier function applies the inverse Fourier transform to M using the definition

fx=FwⅇIxwⅆw2π

• 

The ifourier(M) calling sequence computes the element-wise inverse Fourier transform of M.  The result, R, is formed as R[i,j] = ifourier(M[i,j], v, u).

• 

ifourier(F) is the inverse Fourier transform of the scalar F with default independent variable w.  If F is not a function of w, then F is  assumed to be a function of the independent variable returned by findsym(F,1). By default, the return value is a function of x.

• 

If F = F(x), then ifourier returns a function of t. The integration above proceeds with respect to w.

• 

ifourier(F,u) makes F a function of the variable u instead of the default x. The integration above proceeds with respect to w.

• 

ifourier(F,v,u) takes F to be a function of v instead of the default w. The integration is then with respect to v.

Examples

withMTM:

ifourier31+w2

3Heavisidexⅇx2+3ⅇxHeavisidex2

(1)

ifourier31+x2

3Heavisidetⅇt2+3ⅇtHeavisidet2

(2)

ifourier31+w2,s

3Heavisidesⅇs2+3ⅇsHeavisides2

(3)

ifourierz31+w2,z,t

3IDirac1,tw2+1

(4)

MMatrix31+w2,z31+w2:

ifourierM

3Heavisidexⅇx2+3ⅇxHeavisidex23zHeavisidexⅇx+ⅇxHeavisidex2

(5)

See Also

inttrans[invfourier]

MTM[exp]

MTM[findsym]

MTM[fourier]

MTM[heaviside]