MTM
ilaplace
inverse Laplace integral transform
Calling Sequence
Parameters
Description
Examples
ilaplace(M)
ilaplace(M,y)
ilaplace(M,y, x)
M
-
array or expression
y
variable expr is transformed with respect to y
x
variable in transformed expression
The ilaplace(M) calling sequence computes the element-wise inverse Laplace transform of M. The result, R, is formed as R[i,j] = ilaplace(M[i,j], y, x).
ilaplace(L) is the inverse Laplace transform of the scalar L with default independent variable s. If L is not a function of s, then L is assumed to be a function of the independent variable returned by findsym(L,1).The default return is a function of t.
If L = L(t), then ilaplace returns a function of x.
By definition,
F⁡t=∫c−∞⁢Ic+∞⁢IL⁡s⁢ⅇs⁢tⅆs,
where c is a real number selected so that all singularities of L(s) are to the left of the line s = c and the integration above proceeds with respect to s.
ilaplace(L,y) makes F a function of the variable y instead of the default t.
ilaplace(L,y,x) takes L to be a function of x instead of the default t. The integration is then with respect to y.
with⁡MTM:
ilaplace⁡1s2+4
sin⁡2⁢t2
ilaplace⁡1t2+4
sin⁡2⁢x2
ilaplace⁡1s2+4,w
sin⁡2⁢w2
ilaplace⁡zs2+4,z,q
Dirac⁡1,qs2+4
M≔Matrix⁡1s2+4,zs2+4:
ilaplace⁡M
sin⁡2⁢t2z⁢sin⁡2⁢t2
See Also
inttrans[invlaplace]
MTM[findsym]
MTM[ifourier]
MTM[iztrans]
MTM[laplace]
Download Help Document