MTM
laplace
Laplace integral transform
Calling Sequence
Parameters
Description
Examples
laplace(M)
laplace(M,s)
laplace(M,t, s)
M
-
array or expression
t
variable
s
L = laplace(F) is the Laplace transform of the scalar F with default independent variable t. If F is not a function of t, then F is assumed to be a function of the independent variable returned by findsym(F,1).The default return is a function of s.
If F = F(s), then laplace returns a function of t.
By definition,
L⁡s=∫0∞F⁡t⁢ⅇ−t⁢sⅆt
where the integration above proceeds with respect to t.
laplace(F,x) makes L a function of the variable x instead of the default s.
laplace(F,z,x) makes L a function of x instead of the default s. The integration is then with respect to z.
The laplace(M) function computes the element-wise Laplace transform of M. The result, R, is formed as R[i,j] = laplace(M[i,j]).
with⁡MTM:
laplace⁡BesselI⁡0,2⁢t
1s2−4
laplace⁡BesselI⁡0,2⁢s
1t2−4
laplace⁡BesselI⁡0,2⁢t,x
1x2−4
laplace⁡BesselI⁡0,z⋅2⁢t,z,x
1−4⁢t2+x2
M≔Matrix⁡BesselI⁡0,2⁢t,BesselI⁡0,z⋅2⁢t:
laplace⁡M
1s2−41s2−4⁢z2
See Also
inttrans[laplace]
MTM[findsym]
MTM[fourier]
MTM[ilaplace]
MTM[ztrans]
Download Help Document