MathematicalFunctions
Get
return information on a mathematical function
Calling Sequence
Parameters
Description
Examples
Get(topic, math_function, all)
topic
-
name; specifies the topic for information
math_function
name; mathematical function
all
(optional) literal name; can be used with only calling_sequence topic to return all known calling sequences
The Get(topic, math_function) function returns the topic information on the function math_function. If the requested information is not available it returns NULL.
The topic argument must be one of:
analytic_extension
asymptotic_expansion
branch_cuts
branch_points
calling_sequence
classify_function
definition
describe
differentiation_rule
display
identities
integral_form
plot
series
singularities
special_values
sum_form
To display the list of possible values for the math_function argument, use the FunctionAdvisor(known_functions) function. For more information, see FunctionAdvisor/known_functions.
The Get(topic, math_function) function is equivalent to FunctionAdvisor(topic, math_function), but does not attempt to match misspelled topic or math_function arguments to the correct names. For more information, see FunctionAdvisor.
The FunctionAdvisor command supports additional topics. For more information, see FunctionAdvisor/topics.
with⁡MathematicalFunctions
&Intersect,&Minus,&Union,Assume,Coulditbe,Evalf,Get,Is,SearchFunction,Sequences,Series
Get⁡series,arcsin
series⁡arcsin⁡z,z,4=z+16⁢z3+O⁡z5
Get⁡sum_form,tan
tan⁡z=∑_k1=1∞⁡bernoulli⁡2⁢_k1⁢−1_k1⁢z−1+2⁢_k1⁢4_k1−16_k1Γ⁡2⁢_k1+1,∧⁡z<π2
Get⁡special_values,sec
sec⁡π6=2⁢33,sec⁡π4=2,sec⁡π3=2,sec⁡∞=undefined,sec⁡∞⁢I=0,sec⁡π⁢n=−1,∧⁡n::odd,sec⁡π⁢n=1,∧⁡n::even,sec⁡π⁢n2=∞+∞⁢I,∧⁡n::odd
Get⁡branch_cuts,arccot
arccot⁡z,z∈ComplexRange⁡−∞⁢I,−I∨z∈ComplexRange⁡I,∞⁢I
Get⁡identities,BesselK
BesselK⁡a,I⁢z=−π⁢BesselY⁡a,z2⁢Ia+BesselJ⁡a,z⁢ln⁡z−ln⁡I⁢zIa,∧⁡a::ℤ,BesselK⁡a,I⁢z=−π⁢za⁢BesselY⁡a,z2⁢I⁢za+π⁢BesselJ⁡a,z⁢−I⁢zaza+za⁢cos⁡a⁢πI⁢za⁢csc⁡a⁢π2,∧⁡a::¬ℤ,BesselK⁡a,−z=−1a⁢BesselK⁡a,z+BesselI⁡a,z⁢ln⁡z−ln⁡−z,∧⁡a::ℤ,BesselK⁡a,−z=za⁢BesselK⁡a,z−za+π⁢za−za−−zaza⁢BesselI⁡a,z⁢csc⁡a⁢π2,∧⁡a::¬ℤ,BesselK⁡a,b⁢c⁢zqp=b⁢cp⁢zp⁢qa⁢BesselK⁡a,b⁢cp⁢zp⁢qb⁢c⁢zqpa−π⁢csc⁡a⁢π⁢BesselI⁡a,b⁢cp⁢zp⁢q⁢b⁢c⁢zqpab⁢cp⁢zp⁢qa−b⁢cp⁢zp⁢qab⁢c⁢zqpa2,a::¬ℤ∧2⁢p::ℤ,BesselK⁡a,b⁢c⁢zqp=c⁢zqpcp⁢zp⁢qa⁢BesselK⁡a,b⁢cp⁢zp⁢q−−1a⁢BesselI⁡a,b⁢cp⁢zp⁢q⁢ln⁡b⁢c⁢zqp−ln⁡b⁢cp⁢zp⁢q,a::ℤ∧2⁢p::ℤ,BesselK⁡a,z=2⁢a−1⁢BesselK⁡a−1,zz+BesselK⁡a−2,z,BesselK⁡a,z=−2⁢a+1⁢BesselK⁡a+1,zz+BesselK⁡a+2,z
Get⁡calling_sequence,Ζ,all
ζ⁡s,ζn⁡s,ζn⁡s,a
Get⁡definition,JacobiAM
z=JacobiAM⁡∫0z11−k2⁢sin⁡θ2ⅆθ,k,z::−32,32
Get⁡definition,InverseJacobiAM
InverseJacobiAM⁡φ,k=∫0φ11−k2⁢sin⁡_θ12ⅆ_θ1,with no restrictions on ⁡φ,k
See Also
FunctionAdvisor
FunctionAdvisor/analytic_extension
FunctionAdvisor/asymptotic_expansion
FunctionAdvisor/branch_cuts
FunctionAdvisor/branch_points
FunctionAdvisor/calling_sequence
FunctionAdvisor/classify_function
FunctionAdvisor/definition
FunctionAdvisor/describe
FunctionAdvisor/differentiation_rule
FunctionAdvisor/display
FunctionAdvisor/identities
FunctionAdvisor/integral_form
FunctionAdvisor/series
FunctionAdvisor/singularities
FunctionAdvisor/special_values
FunctionAdvisor/sum_form
MathematicalFunctions[SearchFunction]
MathematicalFunctions[Series]
Download Help Document