Lcoeff - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


MatrixPolynomialAlgebra

  

Lcoeff

  

compute the leading coefficient of a matrix of polynomials

  

Tcoeff

  

compute the trailing coefficient of a matrix of polynomials

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Lcoeff(A, x)

Lcoeff[row](A, x)

Lcoeff[column](A, x)

Tcoeff(A, x)

Tcoeff[row](A, x)

Tcoeff[column](A, x)

Parameters

A

-

Matrix

x

-

name; specify the variable in which the entries of A are rational polynomials over Q

Description

• 

The Lcoeff(A,x) command computes the leading coefficient of a matrix of polynomials A.

• 

The Lcoeff[row](A,x) command computes the leading row coefficient of A.  That is, it computes a matrix with rows that are the leading coefficient of each row of A.

• 

The Lcoeff[column](A,x) command computes the leading column coefficient of A.

• 

The Tcoeff(A,x), Tcoeff[row](A,x), and Tcoeff[column](A,x) commands compute the trailing coefficient, trailing row coefficient, and trailing column coefficients of A, respectively.

Examples

withMatrixPolynomialAlgebra:

A3+x,4,x21|1,x,4|4x3,2x,x3

A3+x14x34x2xx214x3

(1)

LcoeffA,x

00−400000−1

(2)

LcoeffrowA,x

00−401200−1

(3)

LcoeffcolumnA,x

00−401010−1

(4)

TcoeffA,x

310400−140

(5)

TcoeffrowA,x

310400−140

(6)

TcoeffcolumnA,x

310402−140

(7)

See Also

indets

Matrix

MatrixPolynomialAlgebra

MatrixPolynomialAlgebra[Coeff]

MatrixPolynomialAlgebra[Degree]