MatrixPolynomialAlgebra
LeftDivision
compute a left quotient and remainder of 2 matrices of polynomials
RightDivision
compute a right quotient and remainder of 2 matrices of polynomials
Calling Sequence
Parameters
Description
Examples
LeftDivision(A, B, x)
RightDivision(A, B, x)
A
-
Matrix of polynomials
B
x
variable name of the polynomial domain
The LeftDivision(A, B, x) command computes a left quotient Q and a remainder R such that A=B·Q+R where B−1·R is strictly proper. That is, limz→∞B−1z.⁢Rz is a zero matrix. The input matrices must have the same number of rows, and B must be a square nonsingular matrix of polynomials.
The RightDivision(A, B, x) command computes a right quotient Q and a remainder R such that A=Q·B+R where R·B−1 is strictly proper. That is, limz→∞Rz.⁢B−1z is a zero matrix. The input matrices must have the same number of columns, and B must be a square nonsingular matrix of polynomials.
The quotient Q and the remainder R are returned in a list.
with⁡MatrixPolynomialAlgebra:
A≔Matrix⁡2,2,−9⁢z2−3⁢z+1,12⁢z2+10⁢z,−3⁢z3+2⁢z2−z,4⁢z3+2⁢z−2⁢z2:
B≔Matrix⁡2,2,−3⁢z3+6⁢z2+5⁢z+1,−12⁢z2−13⁢z,z4+z3+z2,−4⁢z3−3⁢z+3⁢z2:
Q,R≔op⁡LeftDivision⁡A,B,z
Q,R≔0034−1,27⁢z4+1−3⁢z−14⁢z2+54⁢zz2−z
map⁡expand,A−B·Q+R
0000
map⁡f↦limit⁡f,z=∞,LinearAlgebra:-MatrixInverse⁡B·R
Q,R≔op⁡RightDivision⁡A,B,z
Q,R≔−120−z6+1336−12,−6⁢z2−12⁢z+32−32⁢z36⁢z2+72⁢z−512⁢z3+76⁢z2−9536⁢z−133653⁢z2+18736⁢z
map⁡expand,A−Q·B+R
map⁡f↦limit⁡f,z=∞,R·LinearAlgebra:-MatrixInverse⁡B
See Also
expand
LinearAlgebra[MatrixInverse]
map
Matrix
op
Download Help Document