ModifiedMeijerG
modified Meijer G function
Calling Sequence
Parameters
Description
Examples
References
ModifiedMeijerG(as, bs, cs, ds, z)
as
-
list of the form [a1, ..., am]; first group of numerator Γ parameters
bs
list of the form [b1, ..., bn]; first group of denominator Γ parameters
cs
list of the form [c1, ..., cp]; second group of numerator Γ parameters
ds
list of the form [d1, ..., dq]; second group of denominator Γ parameters
z
expression
Important: The ModifiedMeijerG command has been deprecated. Use the superseding command MeijerG instead.
The modified Meijer G function is defined by the inverse Laplace transform:
ModifiedMeijerGas,bs,cs,ds,z=12⁢π⁢I⁢∮LΓ1−as+y⁢Γcs−yΓbs−y⁢Γ1−ds+y⁢ⅇy⁢zⅆy
where
as=a1,...,am,Γ⁡1−as+y=Γ⁡1−a1+y⁢...⁢Γ⁡1−am+y
bs=b1,...,bn,Γ⁡bs−y=Γ⁡b1−y⁢...⁢Γ⁡bn−y
cs=c1,...,cp,Γ⁡cs−y=Γ⁡c1−y⁢...⁢Γ⁡cp−y
ds=d1,...,dq,Γ⁡1−ds+y=Γ⁡1−d1+y⁢...⁢Γ⁡1−dq+y
and L is one of three types of integration paths Lγ+∞⁢I, L∞, and L−∞.
Contour L∞ starts at ∞+I⁢φ1 and finishes at ∞+I⁢φ2 (φ1<φ2).
Contour L−∞ starts at −∞+I⁢φ1 and finishes at −∞+I⁢φ2 (φ1<φ2).
Contour Lγ+∞⁢I starts at γ+−∞ and finishes at γ+∞⁢I.
All the paths L∞, L−∞, and Lγ+∞⁢I put all cj+k poles on the right and all other poles of the integrand (which must be of the form aj−1+k) on the left.
The classical definition of the Meijer G function is related to the modified definition by
Gpqmn(z|⁢b1,⁢…,⁢bm,bm+1,⁢…,⁢bqa1,⁢…,⁢an,an+1,⁢…,⁢ap)=ModifiedMeijerGa1,⁢…,⁢an,an+1,⁢…,⁢ap,b1,⁢…,⁢bm,bm+1,⁢…,⁢bq,logz
Note: See Prudnikov, Brychkov, and Marichev.
Three noticeable differences between the notations are:
the parameters of the modified Meijer G function are separated out into four natural groups,
ⅇy⁢z instead of zy is placed inside the integral definition of ModifiedMeijerG, and
the pq\mn subscripts and superscripts which are now redundant are omitted.
ModifiedMeijerG⁡1,1,1,1,1,1,2,2,3,4,π
ModifiedMeijerG⁡1,1,1,1,2,2,3,4,π
evalf⁡
−1.205734962×10−20−0.⁢I
s≔2⁢sum⁡−1i⁢ModifiedMeijerG⁡,,0,,ln⁡z+ln⁡1+2⁢I,i=0..∞
s≔2⁢∑i=0∞⁡−1i⁢ModifiedMeijerG⁡,,0,,ln⁡z+ln⁡1+2⁢I
convert⁡s,StandardFunctions
2⁢∑i=0∞⁡−1i⁢ⅇ−1−2⁢I⁢z
convert⁡exp⁡z,ModifiedMeijerG,z
ModifiedMeijerG⁡,,0,,ln⁡z+I⁢π
convert⁡sin⁡z,ModifiedMeijerG,z
π⁢ModifiedMeijerG⁡,,12,0,2⁢ln⁡z−2⁢ln⁡2
convert⁡cos⁡z,ModifiedMeijerG,z
π⁢ModifiedMeijerG⁡,,0,12,2⁢ln⁡z−2⁢ln⁡2
convert⁡Ei⁡z,ModifiedMeijerG,z
−ModifiedMeijerG⁡,1,0,0,,ln⁡z+I⁢π
Prudnikov, A. P.; Brychkov, Yu; and Marichev, O. Integrals and Series, Volume 3: More Special Functions. Gordon and Breach Science, 1990.
See Also
convert/MeijerG
convert/StandardFunctions
MeijerG
Download Help Document