MultivariatePowerSeries
Exponentiate
exponentiate a power series or a Puiseux series or a univariate polynomial over power series or over Puiseux series
Calling Sequence
Parameters
Description
Examples
Compatibility
p^e
s^e
u^n
Exponentiate(p, e)
Exponentiate(s, e)
Exponentiate(u, n)
p
-
power series generated by this package
s
Puiseux series generated by this package
e
integer
u
univariate polynomial over power series or over Puiseux series generated by this package
n
The commands p^e and Exponentiate(p,e) exponentiate the power series p by raising it to the power e.
The commands s^e and Exponentiate(s,e) exponentiate the Puiseux series s by raising it to the power e.
The commands u^n and Exponentiate(u,n) exponentiate the univariate polynomial over power series u by raising it to the power n.
Note that Puiseux series and unit power series can generally be raised to any integer power, whereas non-unit power series and univariate polynomials over power series or over Puiseux series can only be raised to non-negative integer powers.
When using the MultivariatePowerSeries package, do not assign anything to the variables occurring in the power series, Puiseux series, and univariate polynomials over these series. If you do, you may see invalid results.
with⁡MultivariatePowerSeries:
We define a power series, a.
a≔GeometricSeries⁡x,y:
We can define a4 in three different ways: using multiplication, using the exponentiation operator, or using the Exponentiate command.
b≔Multiply⁡a,a,a,a:
c≔a4
c≔PowⅇrSⅇrⅈⅇs of 11−x−y4 : 1+4⁢x+4⁢y+…
d≔Exponentiate⁡a,4
d≔PowⅇrSⅇrⅈⅇs of 11−x−y4 : 1+4⁢x+4⁢y+…
We verify that the homogeneous components of b, c, and d of degree at most 10 are the same.
ApproximatelyEqual⁡b,c,10
true
ApproximatelyEqual⁡b,d,10
We define a univariate polynomial over power series, f.
f≔UnivariatePolynomialOverPowerSeries⁡z−1⁢z−2⁢z−3+x⁢z2+z,z:
Again, we can define f3 in three different ways. We verify that they give the same result (at least for degrees at most 10).
g≔f⁢f⁢f
g≔UnⅈvarⅈatⅇPolynomⅈalOvⅇrPowⅇrSⅇrⅈⅇs: −216+1188+…⁢z+−2826+…⁢z2+3815+…⁢z3+−3222+…⁢z4+1767+…⁢z5+−630+…⁢z6+141+…⁢z7+−18+…⁢z8+1⁢z9
h≔Exponentiate⁡f,3
h≔UnⅈvarⅈatⅇPolynomⅈalOvⅇrPowⅇrSⅇrⅈⅇs: −216+1188+…⁢z+−2826+…⁢z2+3815+…⁢z3+−3222+…⁢z4+1767+…⁢z5+−630+…⁢z6+141+…⁢z7+−18+…⁢z8+1⁢z9
k≔f3
k≔UnⅈvarⅈatⅇPolynomⅈalOvⅇrPowⅇrSⅇrⅈⅇs: −216+1188+…⁢z+−2826+…⁢z2+3815+…⁢z3+−3222+…⁢z4+1767+…⁢z5+−630+…⁢z6+141+…⁢z7+−18+…⁢z8+1⁢z9
ApproximatelyEqual⁡g,h,10
ApproximatelyEqual⁡g,k,10
Now we define a Puiseux series s and compute s3.
s≔PuiseuxSeries⁡x+y1+x+y,x=x⁢y12,y=x⁢y−1
s≔PuⅈsⅇuxSⅇrⅈⅇs of x⁢y+xy1+x⁢y+xy : 0+…
Exponentiate⁡s,3
PuⅈsⅇuxSⅇrⅈⅇs of x⁢y+xy31+x⁢y+xy3 : 0+…
Finally, we create a univariate polynomial over power series from a list of Puiseux series.
h≔UnivariatePolynomialOverPuiseuxSeries⁡PuiseuxSeries⁡1,PuiseuxSeries⁡0,PuiseuxSeries⁡x,x=x13,PuiseuxSeries⁡y,y=y12,PuiseuxSeries⁡x+y1+x+y,x=x⁢y12,y=x⁢y−1,z
h≔UnⅈvarⅈatⅇPolynomⅈalOvⅇrPuⅈsⅇuxSⅇrⅈⅇs: 1+0⁢z+x13⁢z2+y⁢z3+0+…⁢z4
We compute h2.
Exponentiate⁡h,2
UnⅈvarⅈatⅇPolynomⅈalOvⅇrPuⅈsⅇuxSⅇrⅈⅇs: 1+0⁢z+0+…⁢z2+0+…⁢z3+0+…⁢z4+0+…⁢z5+0+…⁢z6+0+…⁢z7+0+…⁢z8
The MultivariatePowerSeries[Exponentiate] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
The MultivariatePowerSeries[Exponentiate] command was updated in Maple 2023.
The and options were introduced in Maple 2023.
For more information on Maple 2023 changes, see Updates in Maple 2023.
See Also
ApproximatelyEqual
GeometricSeries
Multiply
PuiseuxSeries
UnivariatePolynomialOverPowerSeries
Download Help Document