TschirnhausenTransformation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


MultivariatePowerSeries

  

TschirnhausenTransformation

  

apply a linear transformation to a univariate polynomial over power series with Puiseux coefficients

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

TschirnhausenTransformation(u, a)

TschirnhausenTransformation(u, a, m)

Parameters

u

-

univariate polynomial over power series with Puiseux coefficients in one variable generated by this package

a

-

Puiseux series generated by this package

m

-

(optional) non-negative integer

Description

• 

The command TschirnhausenTransformation(u, a) applies the linear transformation xan to u, where n is the degree of a as a polynomial in the variable x. This transformation is called the Tschirnhausen transformation or the Tschirnhaus transformation. If u is monic, then the output of this command produces a univariate polynomial over power series with Puiseux series coefficients such that the monomial of degree n-1 is equal to zero.

• 

The command TschirnhausenTransformation(u, a, m) applies the linear transformation xam to u, with a a univariate polynomial in the variable x.

• 

When using the MultivariatePowerSeries package, do not assign anything to the variables occurring in the power series, Puiseux series, and univariate polynomials over these series. If you do, you may see invalid results.

Examples

withMultivariatePowerSeries:

We create a univariate polynomial over power series from a list of Puiseux series.

aPuiseuxSeriesx1+x,x=x12

aPuⅈsⅇuxSⅇrⅈⅇs of x1+x : 0+

(1)

fUnivariatePolynomialOverPuiseuxSeriesPuiseuxSeries1,PuiseuxSeries0,PuiseuxSeriesx,x=x13,PuiseuxSeriesx,x=x12,a,PuiseuxSeries1,z

fUnⅈvarⅈatⅇPolynomⅈalOvⅇrPuⅈsⅇuxSⅇrⅈⅇs: 1+0z+x13z2+xz3+0+z4+1z5

(2)

We apply the transformation za5 to f.

gTschirnhausenTransformationf,a

gUnⅈvarⅈatⅇPolynomⅈalOvⅇrPuⅈsⅇuxSⅇrⅈⅇs: 1++0+z+0+z2+0+z3+0z4+1z5

(3)

Observe that the monomial of degree 4 is 0.

GetCoefficientg,4

PuⅈsⅇuxSⅇrⅈⅇs: 0

(4)

Finally, observe that by applying the linear transformation z+a5 to g, we get f back.

hTschirnhausenTransformationg,Negatea,5

hUnⅈvarⅈatⅇPolynomⅈalOvⅇrPuⅈsⅇuxSⅇrⅈⅇs: 1++0+z+0+z2+0+z3+0+z4+1z5

(5)

TruncateSubtractf,h,10

0

(6)

Compatibility

• 

The MultivariatePowerSeries[TschirnhausenTransformation] command was introduced in Maple 2023.

• 

For more information on Maple 2023 changes, see Updates in Maple 2023.

See Also

GetCoefficient

PuiseuxSeries

Subtract

Truncate

UnivariatePolynomialOverPowerSeries