MultivariatePowerSeries
TschirnhausenTransformation
apply a linear transformation to a univariate polynomial over power series with Puiseux coefficients
Calling Sequence
Parameters
Description
Examples
Compatibility
TschirnhausenTransformation(u, a)
TschirnhausenTransformation(u, a, m)
u
-
univariate polynomial over power series with Puiseux coefficients in one variable generated by this package
a
Puiseux series generated by this package
m
(optional) non-negative integer
The command TschirnhausenTransformation(u, a) applies the linear transformation x−an to u, where n is the degree of a as a polynomial in the variable x. This transformation is called the Tschirnhausen transformation or the Tschirnhaus transformation. If u is monic, then the output of this command produces a univariate polynomial over power series with Puiseux series coefficients such that the monomial of degree n-1 is equal to zero.
The command TschirnhausenTransformation(u, a, m) applies the linear transformation x−am to u, with a a univariate polynomial in the variable x.
When using the MultivariatePowerSeries package, do not assign anything to the variables occurring in the power series, Puiseux series, and univariate polynomials over these series. If you do, you may see invalid results.
with⁡MultivariatePowerSeries:
We create a univariate polynomial over power series from a list of Puiseux series.
a≔PuiseuxSeries⁡x1+x,x=x12
a≔PuⅈsⅇuxSⅇrⅈⅇs of x1+x : 0+…
f≔UnivariatePolynomialOverPuiseuxSeries⁡PuiseuxSeries⁡1,PuiseuxSeries⁡0,PuiseuxSeries⁡x,x=x13,PuiseuxSeries⁡x,x=x12,a,PuiseuxSeries⁡1,z
f≔UnⅈvarⅈatⅇPolynomⅈalOvⅇrPuⅈsⅇuxSⅇrⅈⅇs: 1+0⁢z+x13⁢z2+x⁢z3+0+…⁢z4+1⁢z5
We apply the transformation z−a5 to f.
g≔TschirnhausenTransformation⁡f,a
g≔UnⅈvarⅈatⅇPolynomⅈalOvⅇrPuⅈsⅇuxSⅇrⅈⅇs: 1+…+0+…⁢z+0+…⁢z2+0+…⁢z3+0⁢z4+1⁢z5
Observe that the monomial of degree 4 is 0.
GetCoefficient⁡g,4
PuⅈsⅇuxSⅇrⅈⅇs: 0
Finally, observe that by applying the linear transformation z+a5 to g, we get f back.
h≔TschirnhausenTransformation⁡g,Negate⁡a,5
h≔UnⅈvarⅈatⅇPolynomⅈalOvⅇrPuⅈsⅇuxSⅇrⅈⅇs: 1+…+0+…⁢z+0+…⁢z2+0+…⁢z3+0+…⁢z4+1⁢z5
Truncate⁡Subtract⁡f,h,10
0
The MultivariatePowerSeries[TschirnhausenTransformation] command was introduced in Maple 2023.
For more information on Maple 2023 changes, see Updates in Maple 2023.
See Also
GetCoefficient
PuiseuxSeries
Subtract
Truncate
UnivariatePolynomialOverPowerSeries
Download Help Document