NumberTheory
IsCyclotomicPolynomial
test whether a polynomial is cyclotomic
Calling Sequence
Parameters
Description
Examples
Compatibility
IsCyclotomicPolynomial(p, x)
IsCyclotomicPolynomial(p, x, output_opt)
p
-
univariate polynomial in x
x
name
output_opt
(optional) an equation of the form output = result, output = order, output = [result, order], or output = [order, result]; the default is output = result
The IsCyclotomicPolynomial function determines whether p is a cyclotomic polynomial, and, optionally, the order of p if p is cyclotomic.
The IsCyclotomicPolynomial(p, x) calling sequence returns true if p(x) is a cyclotomic polynomial, and false otherwise.
Use output_opt to specify whether to return the result, the order, or both:
output = result: Returns true if p is cyclotomic and false otherwise. This is the default behavior for IsCyclotomicPolynomial.
output = order: Returns the order of p as a cyclotomic polynomial if p is cyclotomic. Returns FAIL otherwise.
output = [result, order] (or output = [order, result]): Returns an expression sequence with result and then order (or with order and then result).
If p is the nth cyclotomic polynomial, then p is said to be the order of n.
with⁡NumberTheory:
CyclotomicPolynomial⁡2,x
x+1
By default
IsCyclotomicPolynomial⁡x+1,x
true
IsCyclotomicPolynomial⁡x+2,x
false
IsCyclotomicPolynomial⁡x−12,x,output=order
FAIL
IsCyclotomicPolynomial⁡CyclotomicPolynomial⁡33,x,x,output=result,order
true,33
p≔CyclotomicPolynomial⁡7,x
p≔x6+x5+x4+x3+x2+x+1
zeroes≔solve⁡p=0,x:
q≔mul⁡x−zeroesi,i=1..6
q≔x−cos⁡2⁢π7−I⁢sin⁡2⁢π7⁢x+cos⁡3⁢π7−I⁢sin⁡3⁢π7⁢x+cos⁡π7−I⁢sin⁡π7⁢x+cos⁡π7+I⁢sin⁡π7⁢x+cos⁡3⁢π7+I⁢sin⁡3⁢π7⁢x−cos⁡2⁢π7+I⁢sin⁡2⁢π7
IsCyclotomicPolynomial⁡q,x
The NumberTheory[IsCyclotomicPolynomial] command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
Names
NumberTheory[CyclotomicPolynomial]
Download Help Document