NumberTheory
JordanTotient
Jordan's totient function
Calling Sequence
Parameters
Description
Examples
Compatibility
JordanTotient( k, n )
k
-
positive integer
n
The JordanTotient( k, n ) command computes Jordan's totient function, a generalization of the Euler totient. (See NumberTheory[Totient].) For positive integers k and n, the Jordan totient JordanTotient( k, n ) is defined to be the number of k-tuples (a[1], a[2], ..., a[k]) of positive integers, each less than or equal to n, such that igcd( a[1], a[2], ..., a[k], n ) = 1.
For k = 1, we have JordanTotient( 1, n ) = Totient( n ).
For a fixed positive integer k, the Jordan totient is multiplicative in n; that is, if a and b are coprime positive integers, then JordanTotient( k, a*b ) = JordanTotient( k, a ) * JordanTotient( k, b ).
For a prime power n = p^a, we have JordanTotient( k, p^a ) = p^(k*a) - p^(k*(a-1)).
with⁡NumberTheory:
JordanTotient⁡1,8=Totient⁡8
4=4
JordanTotient⁡2,8≠Totient⁡8
48≠4
JordanTotient⁡2,8⁢JordanTotient⁡2,9=JordanTotient⁡2,8⋅9
3456=3456
seq⁡JordanTotient⁡k,6,k=1..10
2,24,182,1200,7502,45864,277622,1672800,10057502,60406104
The following commands plot the values of JordanTotient[k](n) for n from 2 to 1000, and for k from 2 to 5.
P≔seq⁡plots:-pointplot⁡seq⁡n,JordanTotient⁡k,n,n=2..1000,labels=n,φk⁡n,color=ColorTools:-HueSpread⁡Blue,4,110k−1,symbol=circle,k=2..5:
plots:-display⁡Array⁡P
The following command plots the values of JordanTotient[k](4) for k from 1 to 100 using a logarithmic scale on the vertical axis.
plots:-logplot⁡seq⁡k,JordanTotient⁡k,4,k=1..100,labels=k,φk⁡4,color=Niagara BlueGreen
The NumberTheory[JordanTotient] command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
NumberTheory[Totient]
Download Help Document