NumberTheory
QuadraticResidue
quadratic residuosity of a number
Calling Sequence
Parameters
Description
Examples
Compatibility
QuadraticResidue(a, n)
a
-
integer
n
positive integer
The QuadraticResidue(a, n) command returns 1 if a is a quadratic residue modulo n, and returns −1 if a is a quadratic non-residue modulo n.
If there exists an integer b such that b2 is congruent to a modulo n, then a is said to be a quadratic residue modulo n. If there does not exist such a b, then a is said to be a quadratic non-residue modulo n.
with⁡NumberTheory:
Numbers congruent to a perfect square are always quadratic residues. The converse is true as well.
QuadraticResidue⁡11,22
1
121mod22
11
QuadraticResidue⁡22,11
12 is a quadratic residue modulo 24.
QuadraticResidue⁡12,24
62mod24
12
3 is not a quadratic residue modulo 7.
QuadraticResidue⁡3,7
−1
seq⁡a2mod7,a=0..6
0,1,4,2,2,4,1
In the following plot, for each row index i and column index j, if the box indexed by i and j is black then j is a quadratic residue modulo i. If the box is white then j is a quadratic non-residue modulo i.
Q≔Matrix⁡100,100,i,j↦`if`⁡i<j,−1,QuadraticResidue⁡j,i
Statistics:-HeatMap⁡Q,colour=white,black
The NumberTheory[QuadraticResidue] command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
Download Help Document