NumberTheory
RootsOfUnity
modular roots of unity
Calling Sequence
Parameters
Description
Examples
Compatibility
RootsOfUnity(k, n)
k
-
prime number
n
positive integer
The RootsOfUnity(k, n) command computes all the kth roots of unity modulo n.
An integer x is said to be a kth root of unity modulo n if xk=1modn.
with⁡NumberTheory:
unity≔RootsOfUnity⁡5,8965
unity≔1,1631,2446,3261,6521
map⁡x↦x5mod8965,unity
1
Distribution of the second roots of unity. A point x,y on the plot denotes that y is a second root of unity modulo x.
plots:-pointplot⁡select⁡p↦p22modp1=1,seq⁡seq⁡i,j,j=0..i−1,i=1..1000,labels=Modulus,Second roots of unity,labeldirections=horizontal,vertical
The NumberTheory[RootsOfUnity] command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
Download Help Document