NumberTheory
Totient
Euler's totient function
Calling Sequence
Parameters
Description
Examples
Compatibility
Totient(n)
phi(n)
φ⁡n
varphi(n)
ϕ⁡n
n
-
positive integer
The Totient function computes Euler's totient function.
Given a positive integer n, Totient(n) returns the number of positive integers coprime to n and not greater than n.
phi and varphi are aliases of Totient.
You can enter the commands phi and varphi using either the 1-D or 2-D calling sequence. For example, phi(8) is equivalent to φ⁡8, and varphi(8) is equivalent to ϕ⁡8.
with⁡NumberTheory:
Totient⁡1,φ⁡2,ϕ⁡3
1,1,2
If two integers n and m are coprime, then Totient(n)*Totient(m) = Totient(m*n). That is, the totient function is multiplicative.
Totient⁡44⁢Totient⁡79,Totient⁡44⋅79
1560,1560
andmap⁡i↦igcd⁡i1,i2≠1xorφ⁡i1⋅i2=φ⁡i1⋅φ⁡i2,seq⁡seq⁡i,j,j=1..100,i=1..100
true
The totient of any prime p is equal to p-1.
Totient⁡59,Totient⁡101
58,100
andmap⁡i↦ithprime⁡i−1=ϕ⁡ithprime⁡i,seq⁡1..100
The following command plots the values of Totient(n) for n from 2 to 1000.
plots:-pointplot⁡seq⁡n,Totient⁡n,n=2..1000,labels=n,φ⁡n,color=Niagara BlueGreen,symbol=circle
The NumberTheory[Totient] command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
NumberTheory[InverseTotient]
Download Help Document