Base - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Ordinals

  

Base

  

convert ordinals between bases

 

Calling Sequence

Parameters

Returns

Description

Examples

Compatibility

Calling Sequence

Base(a, b, output=o)

Parameters

a, b

-

ordinals, nonnegative integers, or polynomials with positive integer coefficients

o

-

(optional) literal keyword; either list (default) or inert

Returns

• 

By default, a list of pairs e1,c1,e2,c2,..., where each ei and ci is either an ordinal data structure, a nonnegative integer, or a polynomial with positive integer coefficients, and 0cib for all i, where  is the ordering of ordinals.

• 

If output=inert is specified, then an inert sum of products of ordinal numbers using the inert operators &+, &. and &^, respectively, is returned.

Description

• 

The Base(a,b) calling sequence expresses the ordinal a in terms of powers of the base b instead of the standard base ω.

• 

By default, the result is returned as a list of pairs e1,c1,e2,c2,... such that

a=be1c1+be2c2+

  

e1e2 and  0cib for all i. Use output=inert to return the above sum-of-products form instead; see the Returns section.

• 

This representation is unique if b2. If b=0 or b=1, a division by zero error is raised.

• 

The exponents ei are not converted recursively; they are still represented in Cantor normal form (with respect to base ω).

• 

If bω, then all coefficients ci are either positive integers or polynomials with positive integer coefficients. In particular, if b=ω, then the ei and ci are just the exponents and coefficients of a in the Cantor normal form. Otherwise, if bω, some of the coefficients will be proper ordinals ω.

• 

The output representation is computed by calling the Log command repeatedly: if l,q,r=Loga,b, then Basea,b=l,q,opBaser,b.

• 

If one of a and b is a parametric ordinal and the logarithm cannot be taken, an error is raised.

Examples

withOrdinals

`+`&comma;`.`&comma;`<`&comma;<=&comma;Add&comma;Base&comma;Dec&comma;Decompose&comma;Div&comma;Eval&comma;Factor&comma;Gcd&comma;Lcm&comma;LessThan&comma;Log&comma;Max&comma;Min&comma;Mult&comma;Ordinal&comma;Power&comma;Split&comma;Sub&comma;`^`&comma;degree&comma;lcoeff&comma;log&comma;lterm&comma;ω&comma;quo&comma;rem&comma;tcoeff&comma;tdegree&comma;tterm

(1)

aOrdinal5&comma;1&comma;4&comma;4&comma;2&comma;2&comma;1&comma;1&comma;0&comma;3

aω5&plus;ω44&plus;ω22&plus;ω&plus;3

(2)

bOrdinal2&comma;1&comma;0&comma;3

bω2&plus;3

(3)

Basea&comma;b

2&comma;ω&plus;3&comma;1&comma;ω2&plus;2&comma;0&comma;ω&plus;3

(4)

l,q,rLoga&comma;b

l,q,r2,ω&plus;3,ω4&plus;ω22&plus;ω&plus;3

(5)

Baser&comma;b

1&comma;ω2&plus;2&comma;0&comma;ω&plus;3

(6)

Basea&comma;b&comma;output=inert

ω2&plus;32ω&plus;3&plus;ω2&plus;3ω2&plus;2&plus;ω&plus;3

(7)

value

ω5&plus;ω44&plus;ω22&plus;ω&plus;3

(8)

Parametric examples.

Basea&comma;ω2+2+x

Error, (in Ordinals:-Sub) unable to subtract 2+x from 2

Basea&comma;ω2+3+x

2&comma;ω&plus;3&comma;1&comma;ω2&plus;2&comma;0&comma;ω&plus;3

(9)

Basea&comma;ω2+3+x&comma;output=inert

ω2&plus;3+x2ω&plus;3&plus;ω2&plus;3+xω2&plus;2&plus;ω&plus;3

(10)

value

ω5&plus;ω44&plus;ω22&plus;ω&plus;3

(11)

Basea&comma;ω2+2

2&comma;ω&plus;4&comma;0&comma;ω&plus;3

(12)

Basea&comma;ω2+1

2&comma;ω&plus;4&comma;1&comma;1&comma;0&comma;ω&plus;3

(13)

Basea&comma;ω2

2&comma;ω&plus;4&comma;1&comma;2&comma;0&comma;ω&plus;3

(14)

Basea&comma;ω+4+x

4&comma;ω&plus;3&comma;3&comma;ω&comma;2&comma;1&comma;1&comma;ω&comma;0&comma;ω&plus;3

(15)

Basea&comma;ω+3

5&comma;1&comma;3&comma;ω&comma;2&comma;1&comma;1&comma;ω&plus;1

(16)

Basea&comma;ω+2

5&comma;1&comma;4&comma;1&comma;3&comma;ω&comma;2&comma;1&comma;1&comma;ω&plus;1&comma;0&comma;1

(17)

Basea&comma;ω+1

5&comma;1&comma;4&comma;2&comma;3&comma;ω&comma;2&comma;2&comma;0&comma;2

(18)

Basea&comma;ω=opa

5&comma;1&comma;4&comma;4&comma;2&comma;2&comma;1&comma;1&comma;0&comma;3=5&comma;1&comma;4&comma;4&comma;2&comma;2&comma;1&comma;1&comma;0&comma;3

(19)

When the base is constant.

Basea&comma;5

ω5&comma;1&comma;ω4&comma;4&comma;ω2&comma;2&comma;ω&comma;1&comma;0&comma;3

(20)

Basea&comma;5&comma;output=inert

5ω5&plus;5ω44&plus;5ω22&plus;5ω&plus;3

(21)

Basea&comma;4

ω5&comma;1&comma;ω4&plus;1&comma;1&comma;ω2&comma;2&comma;ω&comma;1&comma;0&comma;3

(22)

Basea&comma;3

ω5&comma;1&comma;ω4&plus;1&comma;1&comma;ω4&comma;1&comma;ω2&comma;2&comma;ω&comma;1&comma;1&comma;1

(23)

Basea&comma;2

ω5&comma;1&comma;ω4&plus;2&comma;1&comma;ω2&plus;1&comma;1&comma;ω&comma;1&comma;1&comma;1&comma;0&comma;1

(24)

If both a and b are integers, this is the usual base b representation.

100=Base100&comma;3&comma;output=inert

100=35&plus;332&plus;3

(25)

Example with nonconstant exponents.

bω·2+3

bω2&plus;3

(26)

bb

ωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω23

(27)

aDec+x

aωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω22&plus;ωω&plus;1&plus;x

(28)

rBasea&comma;b

rω2&plus;2&comma;ω2&plus;2&comma;ω2&plus;1&comma;ω2&plus;2&comma;ω2&comma;ω2&plus;2&comma;ω&comma;ω&comma;0&comma;x

(29)

`+`seqbri,1·ri,2&comma;i=1..nopsr

ωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω22&plus;ωω&plus;1&plus;x

(30)

Compatibility

• 

The Ordinals[Base] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Log]

Ordinals[Ordinal]

Ordinals[Power]

value