Dec - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Ordinals

  

Dec

  

decrement ordinal

 

Calling Sequence

Parameters

Returns

Description

Examples

Compatibility

Calling Sequence

Dec(a)

Parameters

a

-

ordinal, nonnegative integer, or polynomial with positive integer coefficients

Returns

• 

ordinal data structure, nonnegative integer, polynomial with positive integer coefficients, or NULL.

Description

• 

The Dec(a) calling sequence decrements the ordinal number a, if possible. If a=0, then the return value is NULL. Otherwise, if the trailing term is ωec, where e is an ordinal and c is a positive integer, then exactly one of the following happens:

– 

If e=0 then c is replaced by c1.

– 

If e0 and c1, then the trailing term is replaced by the sum of the two terms ωec1+ωDece.

– 

Otherwise, if e0 and c=1, then the trailing exponent is replaced by Dece.

• 

Note that in general Deca is not the largest ordinal number smaller than a, because such an ordinal does not exist if a is a limit ordinal, which means its trailing degree is nonzero.

• 

If a is a parametric ordinal number and c1 is not a polynomial with nonnegative integer coefficients, an error is raised.

Examples

withOrdinals:

aOrdinalω,2,2,3,0,4

aωω2+ω23+4

(1)

whilea0doaDeca;printaenddo:

ωω2+ω23+3

ωω2+ω23+2

ωω2+ω23+1

ωω2+ω23

ωω2+ω22+ω

ωω2+ω22+1

ωω2+ω22

ωω2+ω2+ω

ωω2+ω2+1

ωω2+ω2

ωω2+ω

ωω2+1

ωω2

ωω+ω

ωω+1

ωω

ω

1

0

(2)

Dec5

4

(3)

Parametric examples.

Decx+3

x+2

(4)

bOrdinal1,3,0,x2+x+2

bω3+x2+x+2

(5)

Dec

ω3+x2+x+1

(6)

Dec

ω3+x2+x

(7)

Dec

Error, (in Ordinals:-Dec) cannot decrement, x^2+x

Compatibility

• 

The Ordinals[Dec] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Ordinal]

Ordinals[Sub]

Ordinals[tdegree]