Factor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Ordinals

  

Factor

  

factor an ordinal number

 

Calling Sequence

Parameters

Returns

Description

Examples

Compatibility

Calling Sequence

Factor(a, output=o, form=f)

Parameters

a

-

ordinal, nonnegative integer, or polynomial with positive integer coefficients

o

-

(optional) literal keyword; either list (default) or inert

f

-

(optional) literal keyword; one of full (default), monic, rmonic or pairs

Returns

• 

If output=list (the default), a list of ordinals, nonnegative integers and polynomials with positive integer coefficients is returned.

• 

Otherwise, if output=inert is specified, an inert product of ordinal numbers using the inert multiplication and exponentiation operators &. and &^, respectively, is returned. Factors equal to 1 are omitted from this product representation.

Description

• 

The Factor(a) calling sequence computes a factored normal form of a as a product of nonnegative integers and ordinals of the form ωd or ωd+1.

• 

If a=ωe1c1++ωek1ck1+ωekck, then the full factored normal form is:

ωdkckωdk1+1ck1ωd1+1c1

  

where dk=ek and ei+1=ei+di for 1i<k.

• 

Each factor bi&equals;ωdi&plus;1 is irreducible in the sense that if bi&equals;uv for some ordinals u and v, then necessarily u=1 or v=1, and if bi=uv for some ordinals u and v, then necessarily u=bi and v=1.

• 

The monic factored normal form is:

ωdkωdk1&plus;ckωd1&plus;c2c1

• 

The rmonic factored normal form is:

ωdkckωdk1ck1&plus;1ωd1c1&plus;1

• 

If form=pairs is specified, then the result is returned in the form dk&comma;ck&comma;dk1&comma;ck1&comma;...&comma;d1&comma;c1.

• 

The ordinal a can be parametric. However, unless all coefficients ci are positive when substituting arbitrary nonnegative integers for all the parameters, an error will be raised.

Examples

withOrdinals

`+`&comma;`.`&comma;`<`&comma;<=&comma;Add&comma;Base&comma;Dec&comma;Decompose&comma;Div&comma;Eval&comma;Factor&comma;Gcd&comma;Lcm&comma;LessThan&comma;Log&comma;Max&comma;Min&comma;Mult&comma;Ordinal&comma;Power&comma;Split&comma;Sub&comma;`^`&comma;degree&comma;lcoeff&comma;log&comma;lterm&comma;ω&comma;quo&comma;rem&comma;tcoeff&comma;tdegree&comma;tterm

(1)

aOrdinalω&comma;5&comma;9&comma;4&comma;7&comma;3&comma;5&comma;3&comma;3&comma;3&comma;2&comma;2

aωω5&plus;ω94&plus;ω73&plus;ω53&plus;ω33&plus;ω22

(2)

Factora

ω2&comma;2&comma;ω&plus;1&comma;3&comma;ω2&plus;1&comma;3&comma;ω2&plus;1&comma;3&comma;ω2&plus;1&comma;4&comma;ωω&plus;1&comma;5

(3)

Display the result as a product, and verify the answer.

Factora&comma;output=inert

ω22ω&plus;13ω2&plus;13ω2&plus;13ω2&plus;14ωω&plus;15

(4)

value

ωω5&plus;ω94&plus;ω73&plus;ω53&plus;ω33&plus;ω22

(5)

Other output forms. Note the grouping of similar factors.

Factora&comma;output=inert&comma;form=monic

ω2ω&plus;2ω2&plus;33ωω&plus;45

(6)

Factora&comma;output=inert&comma;form=rmonic

ω22ω3&plus;1ω23&plus;12ω24&plus;1ωω5&plus;1

(7)

Just the bare data of the full factored normal form, and the original data of the Cantor normal form, for comparison.

Factora&comma;form=pairs

2&comma;2&comma;1&comma;3&comma;2&comma;3&comma;2&comma;3&comma;2&comma;4&comma;ω&comma;5

(8)

opa

ω&comma;5&comma;9&comma;4&comma;7&comma;3&comma;5&comma;3&comma;3&comma;3&comma;2&comma;2

(9)

Parametric examples.

Factora+x

Error, (in Ordinals:-Factor) cannot determine if x is nonzero

Factora+x+7&comma;form=rmonic

x+7&comma;ω22&plus;1&comma;ω3&plus;1&comma;ω23&plus;1&comma;ω23&plus;1&comma;ω24&plus;1&comma;ωω5&plus;1

(10)

Multop

ωω5&plus;ω94&plus;ω73&plus;ω53&plus;ω33&plus;ω22&plus;x+7

(11)

Compatibility

• 

The Ordinals[Factor] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Gcd]

Ordinals[Mult]

Ordinals[Ordinal]

value