Ordinals
Factor
factor an ordinal number
Calling Sequence
Parameters
Returns
Description
Examples
Compatibility
Factor(a, output=o, form=f)
a
-
ordinal, nonnegative integer, or polynomial with positive integer coefficients
o
(optional) literal keyword; either list (default) or inert
f
(optional) literal keyword; one of full (default), monic, rmonic or pairs
If output=list (the default), a list of ordinals, nonnegative integers and polynomials with positive integer coefficients is returned.
Otherwise, if output=inert is specified, an inert product of ordinal numbers using the inert multiplication and exponentiation operators &. and &^, respectively, is returned. Factors equal to 1 are omitted from this product representation.
The Factor(a) calling sequence computes a factored normal form of a as a product of nonnegative integers and ordinals of the form ωd or ωd+1.
If a=ωe1⋅c1+⋯+ωek−1⋅ck−1+ωek⋅ck, then the full factored normal form is:
ωdk⋅ck⋅ωdk−1+1⋅ck−1⋅…⋅ωd1+1⋅c1
where dk=ek and ei+1=ei+di for 1≤i<k.
Each factor bi=ωdi+1 is irreducible in the sense that if bi=u⋅v for some ordinals u and v, then necessarily u=1 or v=1, and if bi=uv for some ordinals u and v, then necessarily u=bi and v=1.
The monic factored normal form is:
ωdk⋅ωdk−1+ck⋅…⋅ωd1+c2⋅c1
The rmonic factored normal form is:
ωdk⋅ck⋅ωdk−1⋅ck−1+1⋅…⋅ωd1⋅c1+1
If form=pairs is specified, then the result is returned in the form dk,ck,dk−1,ck−1,...,d1,c1.
The ordinal a can be parametric. However, unless all coefficients ci are positive when substituting arbitrary nonnegative integers for all the parameters, an error will be raised.
with⁡Ordinals
`+`,`.`,`<`,<=,Add,Base,Dec,Decompose,Div,Eval,Factor,Gcd,Lcm,LessThan,Log,Max,Min,Mult,Ordinal,Power,Split,Sub,`^`,degree,lcoeff,log,lterm,ω,quo,rem,tcoeff,tdegree,tterm
a≔Ordinal⁡ω,5,9,4,7,3,5,3,3,3,2,2
a≔ωω⋅5+ω9⋅4+ω7⋅3+ω5⋅3+ω3⋅3+ω2⋅2
Factor⁡a
ω2,2,ω+1,3,ω2+1,3,ω2+1,3,ω2+1,4,ωω+1,5
Display the result as a product, and verify the answer.
Factor⁡a,output=inert
ω2⋅2⋅ω+1⋅3⋅ω2+1⋅3⋅ω2+1⋅3⋅ω2+1⋅4⋅ωω+1⋅5
value⁡
ωω⋅5+ω9⋅4+ω7⋅3+ω5⋅3+ω3⋅3+ω2⋅2
Other output forms. Note the grouping of similar factors.
Factor⁡a,output=inert,form=monic
ω2⋅ω+2⋅ω2+33⋅ωω+4⋅5
Factor⁡a,output=inert,form=rmonic
ω2⋅2⋅ω⋅3+1⋅ω2⋅3+12⋅ω2⋅4+1⋅ωω⋅5+1
Just the bare data of the full factored normal form, and the original data of the Cantor normal form, for comparison.
Factor⁡a,form=pairs
2,2,1,3,2,3,2,3,2,4,ω,5
op⁡a
ω,5,9,4,7,3,5,3,3,3,2,2
Parametric examples.
Factor⁡a+x
Error, (in Ordinals:-Factor) cannot determine if x is nonzero
Factor⁡a+x+7,form=rmonic
x+7,ω2⋅2+1,ω⋅3+1,ω2⋅3+1,ω2⋅3+1,ω2⋅4+1,ωω⋅5+1
Mult⁡op⁡
ωω⋅5+ω9⋅4+ω7⋅3+ω5⋅3+ω3⋅3+ω2⋅2+x+7
The Ordinals[Factor] command was introduced in Maple 2015.
For more information on Maple 2015 changes, see Updates in Maple 2015.
See Also
Ordinals[Gcd]
Ordinals[Mult]
Ordinals[Ordinal]
value
Download Help Document