Ordinals
Log
left logarithm of ordinals
log
Calling Sequence
Parameters
Returns
Description
Examples
Compatibility
Log(a, b)
log[b](a)
log(a)
a, b
-
ordinals, nonnegative integers, or polynomials with positive integer coefficients
All calling sequences return an expression sequence l, q, r such that a=bl⋅q+r, where l, q and r are ordinals, nonnegative integers, or polynomials with positive integer coefficients, and q and r are as small as possible.
The Log(a,b) calling sequence computes the unique ordinal numbers l, q, and r such that a=bl⋅q+r, 0≺q≺b and r≺bl, where ≺ is the strict ordering of ordinals.
If b=0 or b=1, a division by zero error is raised.
The log[b](a) and Log(a,b) calling sequences are equivalent. The log(a) calling sequence is equivalent to Log(a,ω).
If one of a and b is a parametric ordinal and the logarithm cannot be taken, an error is raised.
The log command overloads the corresponding top-level routine log. The top-level command is still accessible via the :- qualifier, that is, as :-log.
with⁡Ordinals
`+`,`.`,`<`,<=,Add,Base,Dec,Decompose,Div,Eval,Factor,Gcd,Lcm,LessThan,Log,Max,Min,Mult,Ordinal,Power,Split,Sub,`^`,degree,lcoeff,log,lterm,ω,quo,rem,tcoeff,tdegree,tterm
a≔Ordinal⁡4,1,2,2,1,3,0,5
a≔ω4+ω2⋅2+ω⋅3+5
b≔Ordinal⁡2,1,0,2
b≔ω2+2
l,q,r≔Log⁡a,b
l,q,r≔2,1,ω⋅3+5
logb⁡a
2,1,ω⋅3+5
bl
ω4+ω2⋅2+2
a=·q+r
ω4+ω2⋅2+ω⋅3+5=ω4+ω2⋅2+ω⋅3+5
LessThan⁡q,b,LessThan⁡r,
true,true
l,q,r≔Log⁡a,b+1
l,q,r≔1,ω2+2,ω⋅3+5
a=b+1l·q+r
LessThan⁡q,b+1,LessThan⁡r,b+1l
log⁡a
4,1,ω2⋅2+ω⋅3+5
Split⁡a,degree=degree⁡a
ω4,ω2⋅2+ω⋅3+5
Parametric examples:
Log⁡a,ω2+2+x
Error, (in Ordinals:-Sub) unable to subtract 2+x from 2
Log⁡a,ω2+3+x
1,ω2+2,ω⋅3+5
Log⁡a,ω2+2
Log⁡a,ω2+1
2,1,ω2+ω⋅3+5
Log⁡a,ω2
2,1,ω2⋅2+ω⋅3+5
Log⁡a,ω+1+x
3,ω,ω2⋅2+ω⋅3+5
Log⁡a,ω
When the base is constant:
l,q,r≔Log⁡a,x+2
l,q,r≔ω⋅4,1,ω2⋅2+ω⋅3+5
x+2l
ω4
When both arguments are integers, the first return value is the integer part of the logarithm over the real numbers:
l,q,r≔Log⁡100,3
l,q,r≔4,1,19
evalf⁡ln⁡100ln⁡3
4.191806548
3l⁢q+r
100
Example with a nonconstant logarithm:
b≔ω·2+3
b≔ω⋅2+3
bb
ωω⋅2+3⋅2+ωω⋅2+2⋅6+ωω⋅2+1⋅6+ωω⋅2⋅3
a≔Dec⁡+x
a≔ωω⋅2+3⋅2+ωω⋅2+2⋅6+ωω⋅2+1⋅6+ωω⋅2⋅2+ωω+1+x
Log⁡a,b
ω⋅2+2,ω⋅2+2,ωω⋅2+2⋅2+ωω⋅2+1⋅6+ωω⋅2⋅2+ωω+1+x
The Ordinals[Log] and Ordinals[log] commands were introduced in Maple 2015.
For more information on Maple 2015 changes, see Updates in Maple 2015.
See Also
Ordinals[Base]
Ordinals[Div]
Ordinals[Ordinal]
Ordinals[Power]
Ordinals[Split]
overload
Download Help Document