Log - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Ordinals

  

Log

  

left logarithm of ordinals

  

log

  

left logarithm of ordinals

 

Calling Sequence

Parameters

Returns

Description

Examples

Compatibility

Calling Sequence

Log(a, b)

log[b](a)

log(a)

Parameters

a, b

-

ordinals, nonnegative integers, or polynomials with positive integer coefficients

Returns

• 

All calling sequences return an expression sequence l, q, r such that a=blq+r, where l, q and r are ordinals, nonnegative integers, or polynomials with positive integer coefficients, and q and r are as small as possible.

Description

• 

The Log(a,b) calling sequence computes the unique ordinal numbers l, q, and r such that a=blq+r, 0qb and rbl, where  is the strict ordering of ordinals.

• 

If b=0 or b=1, a division by zero error is raised.

• 

The log[b](a) and Log(a,b) calling sequences are equivalent. The log(a) calling sequence is equivalent to Log(a,ω).

• 

If one of a and b is a parametric ordinal and the logarithm cannot be taken, an error is raised.

• 

The log command overloads the corresponding top-level routine log. The top-level command is still accessible via the :- qualifier, that is, as :-log.

Examples

withOrdinals

`+`&comma;`.`&comma;`<`&comma;<=&comma;Add&comma;Base&comma;Dec&comma;Decompose&comma;Div&comma;Eval&comma;Factor&comma;Gcd&comma;Lcm&comma;LessThan&comma;Log&comma;Max&comma;Min&comma;Mult&comma;Ordinal&comma;Power&comma;Split&comma;Sub&comma;`^`&comma;degree&comma;lcoeff&comma;log&comma;lterm&comma;ω&comma;quo&comma;rem&comma;tcoeff&comma;tdegree&comma;tterm

(1)

aOrdinal4&comma;1&comma;2&comma;2&comma;1&comma;3&comma;0&comma;5

aω4&plus;ω22&plus;ω3&plus;5

(2)

bOrdinal2&comma;1&comma;0&comma;2

bω2&plus;2

(3)

l,q,rLoga&comma;b

l,q,r2,1,ω3&plus;5

(4)

logba

2,1,ω3&plus;5

(5)

bl

ω4&plus;ω22&plus;2

(6)

a=·q+r

ω4&plus;ω22&plus;ω3&plus;5=ω4&plus;ω22&plus;ω3&plus;5

(7)

LessThanq&comma;b,LessThanr&comma;

true,true

(8)

l,q,rLoga&comma;b+1

l,q,r1,ω2&plus;2,ω3&plus;5

(9)

a=b+1l·q+r

ω4&plus;ω22&plus;ω3&plus;5=ω4&plus;ω22&plus;ω3&plus;5

(10)

LessThanq&comma;b+1,LessThanr&comma;b+1l

true,true

(11)

loga

4,1,ω22&plus;ω3&plus;5

(12)

Splita&comma;degree=degreea

ω4&comma;ω22&plus;ω3&plus;5

(13)

Parametric examples:

Loga&comma;ω2+2+x

Error, (in Ordinals:-Sub) unable to subtract 2+x from 2

Loga&comma;ω2+3+x

1,ω2&plus;2,ω3&plus;5

(14)

Loga&comma;ω2+2

2,1,ω3&plus;5

(15)

Loga&comma;ω2+1

2,1,ω2&plus;ω3&plus;5

(16)

Loga&comma;ω2

2,1,ω22&plus;ω3&plus;5

(17)

Loga&comma;ω+1+x

3,ω,ω22&plus;ω3&plus;5

(18)

Loga&comma;ω

4,1,ω22&plus;ω3&plus;5

(19)

When the base is constant:

l,q,rLoga&comma;x+2

l,q,rω4,1,ω22&plus;ω3&plus;5

(20)

x+2l

ω4

(21)

a=·q+r

ω4&plus;ω22&plus;ω3&plus;5=ω4&plus;ω22&plus;ω3&plus;5

(22)

When both arguments are integers, the first return value is the integer part of the logarithm over the real numbers:

l,q,rLog100&comma;3

l,q,r4,1,19

(23)

evalfln100ln3

4.191806548

(24)

3lq+r

100

(25)

Example with a nonconstant logarithm:

bω·2+3

bω2&plus;3

(26)

bb

ωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω23

(27)

aDec+x

aωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω22&plus;ωω&plus;1&plus;x

(28)

Loga&comma;b

ω2&plus;2,ω2&plus;2,ωω2&plus;22&plus;ωω2&plus;16&plus;ωω22&plus;ωω&plus;1&plus;x

(29)

Compatibility

• 

The Ordinals[Log] and Ordinals[log] commands were introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Base]

Ordinals[Div]

Ordinals[Ordinal]

Ordinals[Power]

Ordinals[Split]

overload