Max - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Ordinals

  

Max

  

maximum of ordinals

  

Min

  

minimum of ordinals

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Max(a, b, ...)

Min(a, b, ...)

Parameters

a, b, ...

-

ordinal numbers, that is, ordinals, non-negative integers, or polynomials with positive integer coefficients, or (possibly nested) lists of ordinal numbers

Description

• 

If all arguments are ordinal numbers, the Max(a, b, ...) calling sequence returns the largest of the arguments with respect to the ordering of ordinals, and the Min(a, b, ...) calling sequence returns the smallest of the arguments.

• 

Any of the arguments can be a (possibly nested) list, and the argument sequence is converted into a non-nested, flat sequence of ordinal numbers first.

• 

Max() returns 0, and Min() returns NULL.

• 

Parametric ordinals are accepted. If the left difference of two ordinal numbers cannot be determined in the parametric case, an error will be raised.

Examples

withOrdinals:

aOrdinalω,3,3,5,1,1,0,4

aωω3+ω35+ω+4

(1)

bOrdinalω,3,3,3,2,2

bωω3+ω33+ω22

(2)

Max3,a,ω,b

ωω3+ω35+ω+4

(3)

Min3,a,ω,b=Min3,a,ω,b

3=3

(4)

sort3,a,ω,b,LessThan

3,ω,ωω3+ω33+ω22,ωω3+ω35+ω+4

(5)

Max

0

(6)

Parametric examples.

cOrdinal1,x,0,2

cωx+2

(7)

Maxb,3,c

ωω3+ω33+ω22

(8)

Minb,3,c

Error, (in Ordinals:-degree) cannot determine if x is nonzero

Minb,3,Evalc,x=x+1

3

(9)

MaxEvalc,x=x+1,Evalc,x=x2+1

Error, (in Ordinals:-Max) unable to determine maximal element

Compatibility

• 

The Ordinals[Max] and Ordinals[Min] commands were introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Gcd]

Ordinals[Lcm]

Ordinals[LessThan]

Ordinals[Ordinal]