^ - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Ordinals[Power]

ordinal exponentiation

Ordinals[`^`]

ordinal exponentiation

&^

inert ordinal exponentiation

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Power(a, b, ...)

a ^ b

a &^ b

Parameters

a, b, ...

-

ordinals, nonnegative integers, or polynomials with positive integer coefficients

Description

• 

The Power and ^ calling sequences perform exponentiation of the given ordinal numbers according to the rules of ordinal arithmetic. Let a=ωec+r, where c is a positive integer and r=0 or edegreer in the strict ordering  of ordinals.

– 

0b=0 if b0.

– 

a0=1b=1.

– 

If b is a positive integer, then ab=aaabtimes.

– 

If a=c2 is a positive integer and b=ωl+d, where d is a nonnegative integer, then ab=ωlcd.

– 

If e0 and tdegreeb0, then ab=ωeb.

– 

If b=b1+b2, then ab=ab1ab2.

– 

If more than two arguments are specified, the powering will be performed right-associatively, that is, Powera,b,c,...=Powera,Powerb,c,....

• 

Mathematically, exponentiation of two ordinals ab corresponds to the set of all functions f:ba, between the corresponding well-orderings b and a, with finite support, such that fx0 for only finitely many xb, together with the ordering defined by:

fgxb:fxbgxyax:fy=gy

• 

In the two-argument case, if a,b are both nonzero,  a1 and at least one of them is an ordinal data structure, that is, an ordinal number greater or equal to ω, then the result is an ordinal data structure. Otherwise, the result is a nonnegative integer or a polynomial with positive integer coefficients.

• 

The &^ calling sequence is the inert form of ordinal exponentiation. No actual exponentiation is performed, but the result will be rendered as an inert power, with parentheses around the first argument.

• 

Applying the value command will turn the inactive &. operator into the active . operator, causing the ordinal multiplication to be computed as described above.

• 

The first argument a can be a parametric ordinal. If it cannot be determined whether its leading or trailing coefficient is nonzero, an error may be raised.

Examples

withOrdinals

`+`&comma;`.`&comma;`<`&comma;<=&comma;Add&comma;Base&comma;Dec&comma;Decompose&comma;Div&comma;Eval&comma;Factor&comma;Gcd&comma;Lcm&comma;LessThan&comma;Log&comma;Max&comma;Min&comma;Mult&comma;Ordinal&comma;Power&comma;Split&comma;Sub&comma;`^`&comma;degree&comma;lcoeff&comma;log&comma;lterm&comma;ω&comma;quo&comma;rem&comma;tcoeff&comma;tdegree&comma;tterm

(1)

Power,Power0,Power0&comma;0,Power0&comma;0&comma;0,Power0&comma;0&comma;0&comma;0

1,0,1,0,1

(2)

Power,Power2,Power2&comma;2,Power2&comma;2&comma;2,Power2&comma;2&comma;2&comma;2

1,2,4,16,65536

(3)

lengthPower2&comma;2&comma;2&comma;2&comma;2

19729

(4)

aω·2+3

aω2&plus;3

(5)

a0,a,a2,a3,a4

1,ω2&plus;3,ω22&plus;ω6&plus;3,ω32&plus;ω26&plus;ω6&plus;3,ω42&plus;ω36&plus;ω26&plus;ω6&plus;3

(6)

0ω,1ω,2ω,3ω,4ω

0,1,ω,ω,ω

(7)

2ω·2,2ω·2+3,2ω2+3,2ωω+3

ω2,ω28,ωω8,ωωω8

(8)

aa=ωω·2·a3

ωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω23=ωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω23

(9)

The inert exponentiation operator is useful for display purposes:

resultaa&colon;

result=valueresult

ω2&plus;3ω2&plus;3=ωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω23

(10)

Parametric examples:

bOrdinal2&comma;x+1&comma;1&comma;y&comma;0&comma;z+1

bω2x+1&plus;ωy&plus;z+1

(11)

b4

ω8x+1&plus;ω7y&plus;ω6xz+x+z+1&plus;ω5y&plus;ω4xz+x+z+1&plus;ω3y&plus;ω2xz+x+z+1&plus;ωy&plus;z+1

(12)

oOrdinalω&comma;3&comma;2&comma;y&comma;0&comma;z

oωω3&plus;ω2y&plus;z

(13)

oω

ωω2

(14)

oω+1=oω·o

ωω2&plus;ω3&plus;ωω2&plus;2y&plus;ωω2z=ωω2&plus;ω3&plus;ωω2&plus;2y&plus;ωω2z

(15)

oω+2

Error, (in Ordinals:-Power) cannot determine if z is nonzero

o+1ω+2

ωω2&plus;ω23&plus;ωω2&plus;ω&plus;2y&plus;ωω2&plus;ω3z+3&plus;ωω2&plus;2y&plus;ωω2z+1

(16)

Compatibility

• 

The Ordinals[Power], Ordinals[`^`] and &^ commands were introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Log]

Ordinals[Mult]

Ordinals[Ordinal]

value