OreTools
Add
add several Ore polynomials
Minus
subtract two Ore polynomials
ScalarMultiply
multiply an Ore polynomial on the left by a scalar
Multiply
multiply several Ore polynomials
Calling Sequence
Parameters
Description
Examples
Add(Ore1, ..., Orek)
Minus(Ore1, Ore2)
ScalarMultiply(s, Ore1)
Multiply(Ore1, ..., Orek, A)
Ore1, Ore2, ..., Orek
-
Ore polynomials; to define an Ore polynomial, use the OrePoly structure.
s
scalar from the coefficient domain
A
Ore algebra; to define an Ore algebra, use the SetOreRing function.
The Add(Ore1, ..., Orek) calling sequence adds the Ore polynomials Ore1,..., Orek.
The Minus(Ore1, Ore2) calling sequence subtracts the Ore polynomial Ore2 from the Ore polynomial Ore1.
The ScalarMultiply(s, Ore1) calling sequence multiplies the Ore polynomial Ore1 on the left by the scalar s.
The Multiply(Ore1, ..., Orek, A) calling sequence multiplies the t Ore polynomials Ore1, ..., Orek in the Ore algebra A.
with⁡OreTools:
Define the shift algebra.
A≔SetOreRing⁡n,shift
A≔UnivariateOreRing⁡n,shift
Perform arithmetic operations.
Ore1≔OrePoly⁡−nn−1,−−5⁢n+n2+3n−1,n−3
Ore1≔OrePoly⁡−nn−1,−n2−5⁢n+3n−1,n−3
Ore2≔OrePoly⁡−n,3⁢n−n2−1,n−12
Ore2≔OrePoly⁡−n,−n2+3⁢n−1,n−12
Add⁡Ore1,Ore2,Ore1
OrePoly⁡−n⁢n+1n−1,−n3−2⁢n2−6⁢n+5n−1,n2−5
Minus⁡Ore1,Ore2
OrePoly⁡n⁢−2+nn−1,n3−5⁢n2+9⁢n−4n−1,−n2+3⁢n−4
ScalarMultiply⁡sqrt⁡2,Ore1
OrePoly⁡−2⁢nn−1,−2⁢n2−5⁢n+3n−1,2⁢n−3
Multiply⁡Ore1,Ore2,Ore1,A
OrePoly⁡−n3n−12,−3⁢n5−12⁢n4+10⁢n2+n−3n⁢n−12,−3⁢n6−18⁢n5+2⁢n4+62⁢n3+8⁢n2−29⁢n−3n⁢n−1⁢n+1,−n7−11⁢n6+3⁢n5+92⁢n4−19⁢n3−168⁢n2+8⁢n+75n−1⁢n+1⁢n+2,3⁢n7−5⁢n6−55⁢n5+37⁢n4+209⁢n3−100⁢n2−142⁢n+57n−1⁢n+2⁢n+3,−3⁢n6−n5−34⁢n4+2⁢n3+31⁢n2−2⁢n−3n−1⁢n+3,n−3⁢n+13
See Also
OreTools/OreAlgebra
OreTools/OrePoly
OreTools/Quotient
OreTools/Remainder
OreTools[SetOreRing]
Download Help Document