GCRD - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


OreTools[Modular]

  

GCRD

  

compute the GCRD of two Ore polynomials modulo a prime

  

LCLM

  

compute the LCLM of a sequence of Ore polynomials modulo a prime

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Modular[GCRD](Ore1, Ore2, p, A)

Modular[LCLM](Ore1, Ore2, ..., Orek, p, A)

Parameters

Ore1, Ore2, ... Orek

-

Ore polynomials; to define an Ore polynomial, use the OrePoly structure

p

-

prime

A

-

Ore ring; to define an Ore ring, use the SetOreRing command

Description

• 

The Modular[GCRD](Ore1, Ore2, p, A) calling sequence returns the GCRD of Ore1 and Ore2 modulo the prime p.

• 

The Modular[LCLM](Ore1, Ore2, ..., Orek, p, A) calling sequence returns the GCRD of Ore1, Ore2, ..., Orek modulo the prime p.

Examples

withOreTools:

ASetOreRingn,differential

AUnivariateOreRingn,differential

(1)

Ore1OrePolyn,n+6

Ore1OrePolyn,n+6

(2)

Ore2OrePolyn,n1

Ore2OrePolyn,n1

(3)

Ore3OrePolyn+1,n1

Ore3OrePolyn+1,n1

(4)

Poly1ModularMultiplyOre1,Ore3,541,A

Poly1OrePoly540n2+6,9n+12,n+6n+540

(5)

Poly2ModularMultiplyOre2,Ore3,541,A

Poly2OrePoly540n2+540,2n+539,n+5402

(6)

ModularGCRDPoly1,Poly2,541,A

OrePolyn+1n+540,1

(7)

ModularLCLMPoly1,Poly2,Ore1,541,A

OrePoly540n6+531n5+37n4+227n3+468n2+95n+456n6+24n5+187n4+511n3+177n2+181n+1,2n6+38n5+168n4+405n3+438n2+101n+195n6+24n5+187n4+511n3+177n2+181n+1,519n5+169n4+97n3+68n2+439n+267n6+24n5+187n4+511n3+177n2+181n+1,539n5+523n4+88n3+396n2+200n+510n5+18n4+79n3+37n2+496n+451,1

(8)

References

  

Abramov, S.A.; Le, H.Q.; and Li, Z. "OreTools: a computer algebra library for univariate Ore polynomial rings." Technical Report CS-2003-12. School of Computer Science, University of Waterloo, 2003.

  

Li, Z., and Nemes, I. "A modular algorithm for computing greatest common right divisors of Ore polynomials." Proc. of ISSAC'97, pp. 282-289. Edited by W. Kuechlin. ACM Press, 1997.

See Also

OreTools

OreTools/Euclidean

OreTools/Modular

OreTools/OreAlgebra

OreTools/OrePoly

OreTools/SetOreRing