OreTools[Modular]
GCRD
compute the GCRD of two Ore polynomials modulo a prime
LCLM
compute the LCLM of a sequence of Ore polynomials modulo a prime
Calling Sequence
Parameters
Description
Examples
References
Modular[GCRD](Ore1, Ore2, p, A)
Modular[LCLM](Ore1, Ore2, ..., Orek, p, A)
Ore1, Ore2, ... Orek
-
Ore polynomials; to define an Ore polynomial, use the OrePoly structure
p
prime
A
Ore ring; to define an Ore ring, use the SetOreRing command
The Modular[GCRD](Ore1, Ore2, p, A) calling sequence returns the GCRD of Ore1 and Ore2 modulo the prime p.
The Modular[LCLM](Ore1, Ore2, ..., Orek, p, A) calling sequence returns the GCRD of Ore1, Ore2, ..., Orek modulo the prime p.
with⁡OreTools:
A≔SetOreRing⁡n,differential
A≔UnivariateOreRing⁡n,differential
Ore1≔OrePoly⁡−n,n+6
Ore2≔OrePoly⁡−n,n−1
Ore3≔OrePoly⁡n+1,n−1
Poly1≔ModularMultiply⁡Ore1,Ore3,541,A
Poly1≔OrePoly⁡540⁢n2+6,9⁢n+12,n+6⁢n+540
Poly2≔ModularMultiply⁡Ore2,Ore3,541,A
Poly2≔OrePoly⁡540⁢n2+540,2⁢n+539,n+5402
ModularGCRD⁡Poly1,Poly2,541,A
OrePoly⁡n+1n+540,1
ModularLCLM⁡Poly1,Poly2,Ore1,541,A
OrePoly⁡540⁢n6+531⁢n5+37⁢n4+227⁢n3+468⁢n2+95⁢n+456n6+24⁢n5+187⁢n4+511⁢n3+177⁢n2+181⁢n+1,2⁢n6+38⁢n5+168⁢n4+405⁢n3+438⁢n2+101⁢n+195n6+24⁢n5+187⁢n4+511⁢n3+177⁢n2+181⁢n+1,519⁢n5+169⁢n4+97⁢n3+68⁢n2+439⁢n+267n6+24⁢n5+187⁢n4+511⁢n3+177⁢n2+181⁢n+1,539⁢n5+523⁢n4+88⁢n3+396⁢n2+200⁢n+510n5+18⁢n4+79⁢n3+37⁢n2+496⁢n+451,1
Abramov, S.A.; Le, H.Q.; and Li, Z. "OreTools: a computer algebra library for univariate Ore polynomial rings." Technical Report CS-2003-12. School of Computer Science, University of Waterloo, 2003.
Li, Z., and Nemes, I. "A modular algorithm for computing greatest common right divisors of Ore polynomials." Proc. of ISSAC'97, pp. 282-289. Edited by W. Kuechlin. ACM Press, 1997.
See Also
OreTools
OreTools/Euclidean
OreTools/Modular
OreTools/OreAlgebra
OreTools/OrePoly
OreTools/SetOreRing
Download Help Document