OreTools
ParametricGCRD
determine the dependency of GCRD on a parameter
Calling Sequence
Parameters
Description
Examples
References
ParametricGCRD(P1, P2, ..., cond, Par, A)
P1, P2, ...
-
Ore polynomials depending on a parameter; to define an Ore polynomial, use the OrePoly structure.
cond
polynomial in Par
Par
name; parameter
A
Ore algebra; to define an Ore algebra, use the SetOreRing function.
The ParametricGCRD(P1, P2, ..., cond, Par, A) calling sequence finds the dependency of the greatest common right divisor (GCRD) of two or more Ore polynomials P1, P2, ... with polynomial coefficients and parametrized on Par that satisfies the polynomial condition cond⁡Par=0.
The ParametricGCRD command returns an error message if the Ore polynomials P1, P2, ... do not have polynomial coefficients.
The return value depends on cond.
If cond is a nonzero constant, the ParametricGCRD command returns NULL.
If cond≠0, the ParametricGCRD command returns piecewise⁡cond_1=0,g1,...,cond_n=0,gn. For i=1, ... n, cond_i is a polynomial in Par, and g_i is an Ore polynomial with polynomial coefficients such that g_i=GCRD(P1, P2, ...) when cond_i⁡Par=0. The product cond_1⁢...⁢cond_n is equal to cond.
If cond=0, the ParametricGCRD command returns piecewise⁡cond_1=0,g1,...,cond_n=0,gn,g_otherwise. For i=1, ... n, cond_i and g_i are defined as in the previous case and g_otherwise=GCRD(P1, P2, ...) for all other values of Par.
If cond=0 and there are no other GCRDs, the ParametricGCRD command returns the Ore polynomial that is the GCRD(P1, P2, ...) for all Par .
with⁡OreTools:
ERing≔SetOreRing⁡x,shift
ERing≔UnivariateOreRing⁡x,shift
p1≔OrePoly⁡1,1,0,a+2⁢x
p2≔OrePoly⁡0,a+2⁢a+1⁢x
ParametricGCRD⁡p1,p2,a+1⁢a+2⁢a,a,ERing
OrePoly⁡−1a=0OrePoly⁡1,1,0,xa+1=0OrePoly⁡1,1a+2=0
DRing≔SetOreRing⁡x,differential
DRing≔UnivariateOreRing⁡x,differential
p3≔OrePoly⁡a,−2⁢a,x+a
p4≔OrePoly⁡a⁢x,−2⁢a⁢x−a+1,a⁢x2+x
p4≔OrePoly⁡x⁢a,−2⁢a⁢x−a+1,a⁢x2+x
ParametricGCRD⁡p3,p4,a2−a⁢a+1,a,DRing
OrePoly⁡a,−2⁢a,x⁢a+1a−1⁢a=0OrePoly⁡1a+1=0
ParametricGCRD⁡p3,p4,0,a,DRing
OrePoly⁡a,−2⁢a,x⁢a+1a−1⁢a=0OrePoly⁡1otherwise
Glotov, P.E. "An algorithm of searching the greatest common divisor for Ore polynomial with polynomial coefficients depending on a parameter." Programming and Computer Software. Vol. 24 No. 6, (1998): 275-283.
See Also
OreTools/Modular/GCRD
OreTools/OreAlgebra
OreTools/OrePoly
OreTools[SetOreRing]
piecewise
Download Help Document