SetOreRing - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


OreTools

  

SetOreRing

  

define an Ore polynomial ring

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

SetOreRing(var, 'shift')

SetOreRing(var,q, 'qshift')

SetOreRing(var, 'differential')

SetOreRing(var, algebra_name, 'sigma' = proc1, 'sigma_inverse' = proc2, 'delta' = proc3, 'theta1' = expr)

Parameters

var

-

name; variable

q

-

name; qshift parameter

algebra_name

-

name; algebra to be defined

proc1, proc2, proc3

-

procedures; define algebra

expr

-

Maple expression

Description

• 

The SetOreRing(var, 'shift') calling sequence defines a shift algebra.

• 

The SetOreRing([var, q], 'qshift') calling sequence defines a qshift algebra.

• 

The SetOreRing(var, 'differential') calling sequence defines a differential algebra.

• 

The shift, qshift, and differential algebras are pre-defined. You can use the SetOreRing command to define other Ore polynomial rings. You must specify procedures to compute sigma, sigma_inverse, and delta, and an expression to define theta(1).

  

For a brief review of pseudo-linear algebra (also known as Ore algebra), see OreAlgebra.

Examples

withOreTools:

Define the shift algebra.

ASetOreRingn,shift

AUnivariateOreRingn,shift

(1)

Define the difference algebra.

B := SetOreRing(n, 'difference',
  'sigma' = proc(p, x) eval(p, x=x+1) end,
  'sigma_inverse' = proc(p, x) eval(p, x=x-1) end,
  'delta' = proc(p, x) eval(p, x=x+1) - p end,
  'theta1' = 0);

BUnivariateOreRingn,difference

(2)

See Also

Ore_algebra

OreTools

OreTools/OreAlgebra

OreTools[Properties][Getdelta]

OreTools[Properties][GetRingName]

OreTools[Properties][GetSigma]

OreTools[Properties][GetSigmaInverse]

OreTools[Properties][GetTheta1]

OreTools[Properties][GetVariable]