OreTools
SetOreRing
define an Ore polynomial ring
Calling Sequence
Parameters
Description
Examples
SetOreRing(var, 'shift')
SetOreRing(var,q, 'qshift')
SetOreRing(var, 'differential')
SetOreRing(var, algebra_name, 'sigma' = proc1, 'sigma_inverse' = proc2, 'delta' = proc3, 'theta1' = expr)
var
-
name; variable
q
name; qshift parameter
algebra_name
name; algebra to be defined
proc1, proc2, proc3
procedures; define algebra
expr
Maple expression
The SetOreRing(var, 'shift') calling sequence defines a shift algebra.
The SetOreRing([var, q], 'qshift') calling sequence defines a qshift algebra.
The SetOreRing(var, 'differential') calling sequence defines a differential algebra.
The shift, qshift, and differential algebras are pre-defined. You can use the SetOreRing command to define other Ore polynomial rings. You must specify procedures to compute sigma, sigma_inverse, and delta, and an expression to define theta(1).
For a brief review of pseudo-linear algebra (also known as Ore algebra), see OreAlgebra.
with⁡OreTools:
Define the shift algebra.
A≔SetOreRing⁡n,shift
A≔UnivariateOreRing⁡n,shift
Define the difference algebra.
B := SetOreRing(n, 'difference', 'sigma' = proc(p, x) eval(p, x=x+1) end, 'sigma_inverse' = proc(p, x) eval(p, x=x-1) end, 'delta' = proc(p, x) eval(p, x=x+1) - p end, 'theta1' = 0);
B≔UnivariateOreRing⁡n,difference
See Also
Ore_algebra
OreTools/OreAlgebra
OreTools[Properties][Getdelta]
OreTools[Properties][GetRingName]
OreTools[Properties][GetSigma]
OreTools[Properties][GetSigmaInverse]
OreTools[Properties][GetTheta1]
OreTools[Properties][GetVariable]
Download Help Document