DiracConjugate - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Physics : DiracConjugate

Physics[DiracConjugate] - compute the Dirac conjugate a given mathematical expression

Calling Sequence

DiracConjugate(psi)

Parameters

psi

-

any mathematical expression, possibly involving spinors or matrices

Description

• 

The DiracConjugate command represents and computes the Dirac conjugate of its argument; the returned result is built as follows:

  

- If ψ=z is a scalar, return its conjugate, z&conjugate0;.

  

- If ψ is a spinor, so defined with one spinor index using the Define command, or ψ is an anticommutative quantum operator (see Setup) with a spinor index, then return unevaluated, as DiracConjugate(psi), displayed as ψ¯, representing ψ¯=ψ·γ0, where ψ is the Hermitian conjugate Dagger(psi) and γ0 is the contravariant 0th Dirac matrix Dgamma[~0].

  

- If ψ=A¯ is the Dirac conjugate of - say -  A, then return A.

  

- If ψ=γμ is a Dirac matrix (represented by the Dgamma command), then return the matrix γμ itself, also when μ=5.

  

- If ψ=M is a Matrix - say M - return the matrix product γ0·M·γ0, where M is the Dagger(M), the Hermitian conjugate of M.

  

- If ψ is a sum of terms, return the sum of the DiracConjugate of each term.

  

- If ψ=A...B is a product, return B¯...A¯, that is the product of the DiracConjugate of each of the factors with the ordering reversed.

  

- If ψ is one of the d_ or dAlembertian operators, return the operator applied to the DiracConjugate of the first operand of ψ.

  

- Otherwise, return the operation unevaluated, DiracConjugate(A).

• 

The %DiracConjugate command is the inert form of DiracConjugate; that is, it represents the same mathematical operation while displaying the operation unevaluated. To evaluate the operation, use the value command.

About Spinors

• 

After loading Physics, you indicate the letter to represent a spinor index using the Setup command, for example: Setup(spinorindices = lowercaselatin). A spinor is then any symbol indexed with one spinor index, and defined as a tensor using Define. If the symbol is anticommutative, and has one spinor index, and was defined as a tensor using Define or alternatively was set as a quantum operator using Setup, then it represents a DiracSpinor,

• 

You can check whether say ψj is a spinor using the Library:-PhysicsType:-Spinor, as in type(psi[j], Library:-PhysicsType:-Spinor). Likewise, you can check if the object is a DiracSpinor using the Library:-PhysicsType:-DiracSpinor. Note that the object can have more than one index, but to be a spinor (Dirac or not), only one of them must be a spinor index. The related types Library:-PhysicsType:-SpinorWithoutIndices and Library:-PhysicsType:-DiracSpinorWithoutIndices return true when the argument passed to them, say ψ, has no indices but would be a Spinor if it had a spinor index.

• 

Any tensor with more than one spinor index, is not "a spinor" but it is spinorial, for the example the Dirac matrices (γ μ μ)j,k. You can check whether an object is spinorial using the Library:-IsSpinorial command, say as in Library:-IsSpinorial(Dgamma[mu][j,k]), which will returns true in this case, and false when the object is not spinorial. Likewise, a sum of spinorial objects, or a product of them with at least one free spinor index, is considered spinorial, for which Library:-IsSpinorial returns true.

Examples

withPhysics:

The Dirac conjugate of a scalar is the standard conjugate

DiracConjugatez

z&conjugate0;

(1)

In general, the Dirac conjugate of the Dirac conjugate of an object is the object itself

DiracConjugate

z

(2)

The Dirac conjugate of a Dirac matrix is the Dirac matrix itself

%DiracConjugate=DiracConjugateDgammaμ

γμ¯=γμ

(3)

Note the display is different from the display of conjugate: the above has the bar in black and bold, instead of blue and thin as in (1)

The Dirac conjugate of γ5 is also equal to itself

%DiracConjugate=DiracConjugateDgamma5

γ5¯=γ5

(4)

Set coordinates, a quantum operator, an anticommutative prefix and a kind of letter to represent spinor indices

Setupcoordinates=cartesian,quantumoperator=A,anticommutativeprefix=B,spinorindices=lowercaselatin

* Partial match of 'quantumoperator' against keyword 'quantumoperators'

Systems of spacetime coordinates are:X=x,y,z,t

_______________________________________________________

anticommutativeprefix=B,coordinatesystems=X,quantumoperators=A,spinorindices=lowercaselatin

(5)

Define then one spinor using the B anticommutative prefix and also a generic noncommutative spinor Aj

DefineAj,Bj

Defined objects with tensor properties

Aj,Bj,γμ,σμ,μ,gμ,ν,εα,β,μ,ν,Xμ

(6)

Take their product

AjBj

AjBj

(7)

Sum over the repeated indices, then take the Dirac conjugate of the sum

SumOverRepeatedIndices

A1B1+A2B2+A3B3+A4B4

(8)

DiracConjugate

B1&conjugate0;A1&conjugate0;+B2&conjugate0;A2&conjugate0;+B3&conjugate0;A3&conjugate0;+B4&conjugate0;A4&conjugate0;

(9)

This result is expressed in terms of the conjugate of the spinor components of A and B. Reversing the order of operations results in the same: take first the Dirac conjugate of the product AjBj, then sum over the repeated indices

DiracConjugate

B¯jA¯j

(10)

SumOverRepeatedIndices

B1&conjugate0;A1&conjugate0;+B2&conjugate0;A2&conjugate0;+B3&conjugate0;A3&conjugate0;+B4&conjugate0;A4&conjugate0;

(11)

Unlike conjugate, DiracConjugate allows for constructing true scalars using contracted products of spinors

DiracConjugateBB

B¯B

(12)

DiracConjugate

B¯B

(13)

DiracConjugateBjBj

B¯jBj

(14)

DiracConjugate

B¯jBj

(15)

The Dirac conjugate of a Matrix

MMatrix4,symbol=m

M

(16)

The output involves the conjugates of the components of the transpose of M multiplied at both sides by the Dirac matrix γ0

DiracConjugateM

(17)

If the matrix components are real,

DiracConjugateMassumingreal

(18)

MMatrix4,i,jAiBj

M

(19)

DiracConjugateM

(20)

The Lagrangian of QED: to load the StandardModel package, clear first the letters used to represent spinor indices

Setupspinorindices=none:

withStandardModel

_______________________________________________________

Setting lowercaselatin_is letters to represent Dirac spinor indices

Setting lowercaselatin_ah letters to represent SU(3) adjoint representation, (1..8) indices

Setting uppercaselatin_ah letters to represent SU(3) fundamental representation, (1..3) indices

Setting uppercaselatin_is letters to represent SU(2) adjoint representation, (1..3) indices

Setting uppercasegreek letters to represent SU(2) fundamental representation, (1..2) indices

_______________________________________________________

Defined as the electron, muon and tau leptons and corresponding neutrinos: ei , μi , τi , νei , νμi , ντi

Defined as the up, charm, top, down, strange and bottom quarks: uA,i , cA,i , tA,i , dA,i , sA,i , bA,i

Defined as gauge tensors: Bμ , 𝔹μ,ν , Aμ , 𝔽μ,ν , Wμ,J , 𝕎μ,ν,J , W+μ , 𝕎+μ,ν , Wμ , 𝕎μ,ν , Zμ , μ,ν , Gμ,a , 𝔾μ,ν,a

Defined as Gell-Mann (Glambda), Pauli (Psigma) and Dirac (Dgamma) matrices: λa , σJ , γμ

Defined as the electric, weak and strong coupling constants: g__e, g__w, g__s

Defined as the charge in units of |g__e| for 1) the electron, muon and tauon, 2) the up, charm and top, and 3) the down, strange and bottom: q__e = −1, q__u = 23, q__d = 13

Defined as the weak isospin for 1) the electron, muon and tauon, 2) the up, charm and top, 3) the down, strange and bottom, and 4) all the neutrinos: I__e = 12, I__u = 12, I__d = 12, I__n = 12

You can use the active form without the % prefix, or the 'value' command to give the corresponding value to any of the inert representations q__e, q__u, q__d, I__e, I__u, I__d, I__n

_______________________________________________________

Default differentiation variables for d_, D_ and dAlembertian are:X=x,y,z,t

Minkowski spacetime with signatre - - - +

_______________________________________________________

I__d,I__e,I__n,I__u,q__d,q__e,q__u,BField,BFieldStrength,Bottom,CKM,Charm,Down,ElectromagneticField,ElectromagneticFieldStrength,Electron,ElectronNeutrino,FSU3,Glambda,GluonField,GluonFieldStrength,HiggsBoson,Lagrangian,Muon,MuonNeutrino,Strange,Tauon,TauonNeutrino,Top,Up,WField,WFieldStrength,WMinusField,WMinusFieldStrength,WPlusField,WPlusFieldStrength,WeinbergAngle,ZField,ZFieldStrength,g__e,g__s,g__w

(21)

CompactDisplayElectronX

ex,y,z,twill now be displayed ase

(22)

LagrangianQED

e¯iIγμμi,jμmeδi,jej𝔽μ,ν𝔽μ,νμ,ν4

(23)

This Lagrangian is a scalar, constructed as a sum of products, where each term and each product involves noncommutative objects; the first term includes the contracted spinor product of the DiracConjugate of the electron field ej. Computing the Dirac conjugate of this Lagrangian is thus expected to result in several intermediate computations such that, at the end, the result is the same Lagrangian

DiracConjugate

ej¯Iγμμj,iμ&conjugate0;δi,j¯meei𝔽μ,νμ,ν𝔽μ,ν4

(24)

For Annihilation and Creation operators, DiracConjugate returns the same as the Dagger command, that is the dual, respectively.

amAnnihilationA,1

ama

(25)

apCreationA,1

apa+

(26)

DiracConjugateam

a+

(27)

DiracConjugateap

a

(28)

DiracConjugate understands Commutator and AntiCommutator

Setupnoncommutativeprefix=Z

noncommutativeprefix=Z

(29)

CommutatorZ1,Z2

Z1,Z2

(30)

=expand

Z1,Z2=Z1Z2Z2Z1

(31)

DiracConjugate

Z2,Z1=Z2Z1Z1Z2

(32)

Thus, the DiracConjugate of an AntiCommutator of Hermitian operators is equal to itself (however, the product of two Hermitian operators is Hermitian only if they commute).

AntiCommutatorZ1,Z2

Z1,Z2+

(33)

=expand

Z1,Z2+=Z1Z2+Z2Z1

(34)

DiracConjugateassumingHermitian

Z1,Z2+=Z1Z2+Z2Z1

(35)

In the generic, non-Hermitian case:

DiracConjugate

Z1,Z2+=Z1Z2+Z2Z1

(36)

For linear operators, differential and others, DiracConjugate is applied to the first operand.

Setupdiff=X

Default differentiation variables for d_, D_ and dAlembertian are:X=x,y,z,t

_______________________________________________________

differentiationvariables=X

(37)

d_μZ1Xd_νZ2X+g_μ,νdAlembertianFX

μZ1XνZ2X+gμ,νFX

(38)

DiracConjugate

νZ2XμZ1X+FX&conjugate0;gμ,ν

(39)

See Also

Annihilation, AntiCommutator, Bra, Bracket, Commutator, Creation, d_, Dagger, dAlembertian, g_, Ket, Physics, Physics conventions, Physics examples, Physics Updates, Tensors - a complete guide, Mini-Course Computer Algebra for Physicists, Setup, value

Compatibility

• 

The Physics[DiracConjugate] command was introduced in Maple 2024.

• 

For more information on Maple 2024 changes, see Updates in Maple 2024.