PochhammerBasis
Pochhammer polynomials based at a point
Calling Sequence
Parameters
Description
Examples
PochhammerBasis(k, a, x)
k
-
algebraic expression; the index
a
algebraic expression; the starting point
x
algebraic expression; the argument
PochhammerBasisk,a,x=∏j=0k−1x+a+j defines the kth Pochhammer polynomial of degree n. The degree of the kth Pochhammer polynomial is k.
At present, this can only be evaluated in Maple by prior use of the object-oriented representation obtained by P:=convert(p,MatrixPolynomialObject,x) and subsequent call to P:-Value(<x-value>) , which uses Horner's method to evaluate the polynomial p.
a≔a
p≔3⁢PochhammerBasis⁡0,a,x+5⁢PochhammerBasis⁡2,a,x+7⁢PochhammerBasis⁡3,a,x
This is in effect a NewtonBasis polynomial expression on the nodes a, a+1, and a+2.
P≔convert⁡p,MatrixPolynomialObject,x
P≔Record⁡Value=Defaultvalue,Variable=x,Degree=3,Coefficient=coe,Dimension=1,1,Basis=PochhammerBasis,BasisParameters=a,IsMonic=mon,OutputOptions=shape=,storage=rectangular,order=Fortran_order,fill=0,attributes=
P:-Degree⁡
3
Note that the result returned by convert⁡...,MatrixPolynomialObject represents a matrix polynomial; hence these results are 1 by 1 matrices.
P:-Value⁡x1,1
x+a⁢x+a+1⁢7⁢x+7⁢a+19+3
p≔add⁡bk⁢PochhammerBasis⁡k,a,x,k=0..3
p≔b0⁢PochhammerBasis⁡0,a,x+b1⁢PochhammerBasis⁡1,a,x+b2⁢PochhammerBasis⁡2,a,x+b3⁢PochhammerBasis⁡3,a,x
collect⁡P:-Value⁡t1,1,seq⁡bk,k=0..3,factor
b0+t+a⁢b1+t+a⁢t+a+1⁢b2+t+a⁢t+a+1⁢t+a+2⁢b3
See Also
BernsteinBasis
convert/MatrixPolynomialObject
LagrangeBasis
LinearAlgebra[CompanionMatrix]
NewtonBasis
OrthogonalSeries
type/MatrixPolynomialObject
Download Help Document