PolyhedralSets
Faces
get the faces of a polyhedral set
ID
get the identifier of a polyhedral set
Calling Sequence
Parameters
Description
Examples
Compatibility
Faces(polyset)
Faces(polyset, dimension = d)
Faces(polyset, faceid = id)
ID(polyset)
polyset
-
polyhedral set
dimension
(optional) integer greater than or equal to −1, dimension of faces to be returned, defaults to one less than the dimension of polyset to return its facets
faceid
(optional) integer or a set or list of integers indexing faces of polyset
The calling sequences Faces(polyset) and Faces(polyset, dimension = d) return a list of polyhedral sets that are d-faces of polyset. Faces(polyset) uses a default value of dimension = Dimension(polyset) - 1, returning the facets of polyset. If there are no faces of dimension d (e.g. asking for vertices of a half-space), an empty list is returned.
The PolyhedralSets[Vertices] (or, PolyhedralSets[Vertexes]) command is shorthand for Faces(polyset, dimension = 0). Similarly, PolyhedralSets[Edges] is shorthand for Faces(polyset, dimension = 1), and PolyhedralSets[Facets] is shorthand for Faces(polyset).
A particular face can be retrieved via Faces(polyset, faceid = id). The identification number id corresponds to those displayed on the graph returned by PolyhedralSets[Graph].
The ID number of a given set can alternatively by obtained with the ID command. This returns an integer that identifies a set relative to its faces. Two unrelated polyhedral sets can have the same ID number, but the faces of a given polyhedral set will always have unique ID numbers.
with⁡PolyhedralSets:
Get the facets of a tetrahedron
t≔ExampleSets:-Tetrahedron⁡:t_faces≔Faces⁡t
t_faces≔{Coordinates:x1,x2,x3Relations:−x3≤1,−x2+x3≤0,x2≤1,x1+x2−x3=1,{Coordinates:x1,x2,x3Relations:x3≤1,−x2≤1,x2−x3≤0,x1−x2+x3=1,{Coordinates:x1,x2,x3Relations:x3≤1,−x2−x3≤0,x2≤1,−x2−x3+x1=−1,{Coordinates:x1,x2,x3Relations:−x3≤1,−x2≤1,x2+x3≤0,x2+x3+x1=−1
Plot the faces individually (which will give them each a different color).
Plot⁡t_faces
The edges of the 5 dimensional simplex are:
s5≔ExampleSets:-Simplex⁡5
s5≔{Coordinates:x1,x2,x3,x4,x5Relations:−x5≤0,−x4≤0,−x3≤0,−x2≤0,−x1≤0,x1+x2+x3+x4+x5≤1
s5_edges≔Faces⁡s5,dimension=1
s5_edges≔{Coordinates:x1,x2,x3,x4,x5Relations:−x5≤0,x5≤1,x4+x5=1,x3=0,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:−x5≤0,x5≤1,x4=0,x3+x5=1,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,−x4≤0,x4≤1,x3+x4=1,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:−x5≤0,x5≤1,x4=0,x3=0,x2+x5=1,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,−x4≤0,x4≤1,x3=0,x2+x4=1,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,−x3≤0,x3≤1,x2+x3=1,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:−x5≤0,x5≤1,x4=0,x3=0,x2=0,x1+x5=1,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,−x4≤0,x4≤1,x3=0,x2=0,x1+x4=1,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,−x3≤0,x3≤1,x2=0,x1+x3=1,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,x3=0,−x2≤0,x2≤1,x1+x2=1,{Coordinates:x1,x2,x3,x4,x5Relations:−x5≤0,x5≤1,x4=0,x3=0,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,−x4≤0,x4≤1,x3=0,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,−x3≤0,x3≤1,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,x3=0,−x2≤0,x2≤1,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,x3=0,x2=0,−x1≤0,x1≤1
ID numbers are used to identify the faces of a given set, but different unrelated sets may have the same ID number.
p1≔PolyhedralSet⁡3≤x,10≤y+x,x≤10,x,y,z;p2≔PolyhedralSet⁡y≤5,3≤y+x,x≤7,x,y,z;ID⁡p1;ID⁡p2
p1≔{Coordinates:x,y,zRelations:−y−x≤−10,−x≤−3,x≤10
p2≔{Coordinates:x,y,zRelations:y≤5,−y−x≤−3,x≤7
26
The faces of a set form a universe, within which the ID numbers uniquely identify members of the graph of the set.
map⁡ID,Faces⁡p1
5,11,25
map⁡ID,Faces⁡p2
17,23,25
The PolyhedralSets[Faces] and PolyhedralSets[ID] commands were introduced in Maple 2015.
For more information on Maple 2015 changes, see Updates in Maple 2015.
See Also
PolyhedralSets[VerticesAndRays]
PolyhedralSets[Dimension]
PolyhedralSets[Graph]
GraphTheory
GraphTheory[DrawGraph]
PolyhedralSets[PolyhedralSet]
Download Help Document