PolyhedralSets
IntegerHull
integer hull of a polyhedral set
Calling Sequence
Parameters
Returns
Description
Examples
References
Compatibility
IntegerHull(polyset, output=value)
polyset
-
PolyhedralSet
value
(optional) either verticesandrays (default) or polyhedralset
The available return types are:
The output=verticesandrays option (default) returns a list of two elements which are the vertices and rays of the integer hull of polyset.
The output=polyhedralset option returns a PolyhedralSet object representing the integer hull of polyset.
The integer hull of a convex polyhedral set is the smallest polyhedral set that contains all the integer points in the input set.
This command computes the integer hull of the convex polyhedral set polyset. polyset can be of any dimension greater or equal to 2, bounded or unbounded. It returns either a list or a PolyhedralSet.
with⁡PolyhedralSets:
ineqs≔2⁢x+5⁢y≤64,20≤7⁢x+5⁢y,3⁢x−6⁢y≤−7
poly≔PolyhedralSet⁡ineqs,x,y
poly≔{Coordinates:x,yRelations:−x−5⁢y7≤−207,x−2⁢y≤−73,x+5⁢y2≤32
By default the integer hull is returned in the form of vertices and rays.
IntegerHull⁡poly
12,8,−8,16,−7,14,−5,11,0,4,1,3,3,3,11,7,
You can also choose to get a PolyhedralSet instead.
IntegerHull⁡poly,output=polyhedralset
{Coordinates:x,yRelations:−y≤−3,−x−y≤−4,−x−5⁢y7≤−207,−x−2⁢y3≤−73,−x−y2≤0,x−2⁢y≤−3,x−y≤4,x+5⁢y2≤32
The PolyhedralSet can be unbounded.
inset≔PolyhedralSet⁡−75,0,134,0,−53,−1,52,−1,0,−1,x,y:
IsBounded⁡inset
false
IntegerHull⁡inset
−1,0,3,0,0,−1
A 3D example.
vertices≔4,8,6,−1,−103,14,−62,8,−103,142,−223,−4
vertices≔4,8,6,−1,−103,14,−3,8,−103,7,−223,−4
vars≔x1,x2,x3
poly3d≔PolyhedralSet⁡vertices,,vars:
IntegerHull⁡poly3d
−2,3,4,−2,4,3,−2,6,−2,−2,8,−2,−1,−2,12,−1,5,−3,0,−3,10,0,−3,11,0,−2,12,0,−1,12,0,0,11,1,−4,9,1,−2,10,2,1,−3,3,−5,5,3,−2,−2,3,−1,6,4,−5,1,4,−3,−3,4,8,6,5,−6,0,5,−4,1,5,1,1,6,−6,−3,6,−6,−2,6,−5,−3,6,−3,−1,
Marc Moreno Maza, and Linxiao Wang. On the Pseudo-Periodicity of the Integer Hull of Parametric Convex Polygons. International Workshop on Computer Algebra in Scientific Computing 2021. Springer LNCS 12865, 2021.
Marc Moreno Maza and Linxiao Wang. Computing the Integer Hull of Convex Polyhedral Sets. International Workshop on Computer Algebra in Scientific Computing 2022. Springer LNCS 13366, 2022.
The PolyhedralSets[IntegerHull] command was introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022.
The PolyhedralSets[IntegerHull] command was updated in Maple 2023.
See Also
PolyhedralSets[PolyhedralSet]
PolyhedralSets[VerticesAndRays]
Download Help Document