EliminationIdeal - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


PolynomialIdeals

  

EliminationIdeal

  

eliminate variables from an ideal (subring intersection)

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

EliminationIdeal(J, X)

Parameters

J

-

polynomial ideal

X

-

set of subring variable names

Description

• 

The EliminationIdeal command eliminates variables from an ideal using a Groebner basis computation. The result of EliminationIdeal(J, X) is the intersection of the ideal J with the subring kX.

• 

Note: You cannot use the Intersect command to compute this result.  For any variables X, the polynomial ring kX is represented by the ideal 1, and Intersect(J, <1>) = J.

• 

The EliminationIdeal command can be used to perform nonlinear elimination on a general set of relations.  This is demonstrated below.

Examples

withPolynomialIdeals&colon;

Jx2y&comma;y2+1

Jy2+1&comma;x2y

(1)

EliminationIdealJ&comma;x

x4+1

(2)

EliminationIdealJ&comma;y

y2+1

(3)

Kx1+t21t2&comma;y1+y22t

Kyy2+12t&comma;xt2+1+t21

(4)

EliminationIdealK&comma;x&comma;y

xy6+y6+2xy4+2y4+xy2+y2+4x4

(5)

In this example, we use EliminationIdeal to derive trigonometric identities algebraically, starting from an ideal of known relations. The trigonometric functions are enclosed in backquotes to prevent Maple from recognizing them.

TRIG`sin(x)`2+`cos(x)`21&comma;`cos(x)``tan(x)``sin(x)`&comma;`sin(2x)`2`sin(x)``cos(x)`&comma;`cos(2x)``cos(x)`2+`sin(x)`2&comma;`cos(2x)``tan(2x)``sin(2x)`

TRIGcos(2x)tan(2x)sin(2x)&comma;2sin(x)cos(x)+sin(2x)&comma;cos(x)tan(x)sin(x)&comma;cos(x)2+sin(x)21&comma;cos(x)2+sin(x)2+cos(2x)

(6)

SEliminationIdealTRIG&comma;`tan(2x)`&comma;`tan(x)`

Stan(2x)tan(x)2tan(2x)+2tan(x)

(7)

isolateopGeneratorsS&comma;`tan(2x)`

tan(2x)=2tan(x)tan(x)21

(8)

TEliminationIdealTRIG&comma;`cos(2x)`&comma;`tan(x)`

Ttan(x)2cos(2x)+tan(x)2+cos(2x)1

(9)

isolateopGeneratorsT&comma;`cos(2x)`

cos(2x)=tan(x)2+1tan(x)2+1

(10)

See Also

Groebner[Basis]

isolate

PolynomialIdeals

PolynomialIdeals[Generators]

PolynomialIdeals[Intersect]