PolynomialIdeals
HilbertDimension
compute the Hilbert dimension of an ideal
MaximalIndependentSet
compute a maximal independent set of variables
IsZeroDimensional
test if an ideal is zero-dimensional
Calling Sequence
Parameters
Description
Examples
References
HilbertDimension(J, X)
MaximalIndependentSet(J, X)
IsZeroDimensional(J, X)
J
-
polynomial ideal
X
(optional) set of ring variable names
The HilbertDimension command computes the Hilbert dimension of an ideal.
The MaximalIndependentSet command computes a maximal independent set of variables for an ideal J in kX. This set has the property that J∩kX=0. The cardinality of this set is an invariant, equal to the Hilbert dimension of the ideal. These commands require a total degree Groebner basis.
The IsZeroDimensional command tests only whether an ideal has Hilbert dimension zero. This can be done using any Groebner basis. In cases where the dimension is not zero, some computation is avoided.
An optional second argument can be used to override the variables of the polynomial ring.
with⁡PolynomialIdeals:
J≔x2−y2+z4⁢w,x⁢z−y⁢w2
J≔−y⁢w2+x⁢z,z4⁢w+x2−y2
J is in Q[w, x, y, z].
IsZeroDimensional⁡J
false
M≔MaximalIndependentSet⁡J
M≔y,z
EliminationIdeal⁡J,M
0
HilbertDimension⁡J
2
V≔IdealInfo:-Variables⁡J
V≔w,x,y,z
HilbertDimension⁡J,VminusM
Becker, T., and Weispfenning, V. Groebner Bases. New York: Springer-Verlag, 1993.
See Also
Groebner[Basis]
Groebner[HilbertDimension]
Groebner[IsZeroDimensional]
MonomialOrders
PolynomialIdeals[EliminationIdeal]
PolynomialIdeals[IdealInfo]
Download Help Document