PolynomialIdeals/NumberOfSolutions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : PolynomialIdeals/NumberOfSolutions

PolynomialIdeals

  

NumberOfSolutions

  

compute the number of solutions over the algebraic closure

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

NumberOfSolutions(J)

NumberOfSolutions(G, tord)

Parameters

J

-

a polynomial ideal

G

-

list or set of polynomials; a Groebner basis

tord

-

a monomial order

Description

• 

The NumberOfSolutions command computes the number of solutions of a system over the algebraic closure of the coefficient field, including multiplicities. A zero-dimensional system has a finite number of solutions.

• 

Let G be a Groebner basis for the ideal, then the number of solutions is equal to the number of monomials not divisible by a leading monomial of G.

• 

Note that if the second calling sequence is used, NumberOfSolutions does not verify that G actually is a Groebner basis for the monomial order tord, and the result may be incorrect if it is not.

• 

This function is part of the PolynomialIdeals package, and can be used in the form NumberOfSolutions(..) only after executing the command with(PolynomialIdeals).  However, it can always be accessed through the long form of the command using PolynomialIdeals[NumberOfSolutions](..).

Examples

withPolynomialIdeals:

Jx2y,y3+y+1

Jx2y,y3+y+1

(1)

IsZeroDimensionalJ

true

(2)

NumberOfSolutionsJ

6

(3)

Observe that the generators of J are already a Groebner basis with respect to plex(x,y). The monomials not divisible by x^2 or y^3 are

Mseqseqxiyj,j=0..2,i=0..1

M1,y,y2,x,xy,xy2

(4)

The same result can be obtained by using the generators directly.

GGeneratorsJ

Gx2y,y3+y+1

(5)

NumberOfSolutionsG,plexx,y

6

(6)

Kx2y,yz1

Kx2y,yz1

(7)

IsZeroDimensionalK

false

(8)

NumberOfSolutionsK

(9)

References

  

Cox, D.; Little, J.; and O'Shea, D. Using Algebraic Geometry. New York: Springer-Verlag, 1998.

See Also

Groebner[Basis]

PolynomialIdeals[IsZeroDimensional]