UnivariatePolynomial - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


PolynomialIdeals

  

UnivariatePolynomial

  

compute the smallest univariate polynomial in an ideal

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

UnivariatePolynomial(v, J, X)

Parameters

v

-

variable name

J

-

polynomial ideal or a list or set of generator polynomials

X

-

(optional) set of variable names

Description

• 

The UnivariatePolynomial command computes a univariate polynomial in v of least degree that is contained in the ideal J. If no such polynomial exists, then zero is returned. A zero-dimensional ideal contains a univariate polynomial in every variable.

• 

The first argument must be the variable in which a univariate polynomial is to be computed.  The second argument must be a polynomial ideal. An optional third argument overrides the default ring variables.

Examples

withPolynomialIdeals:

Jx3y2,yx

Jyx,x3y2

(1)

UnivariatePolynomialx,J

x3x2

(2)

Kx3y3+1,y2+2,12zt22t3+1

Ky2+2,2t3+12zt2+1,x3y3+1

(3)

UnivariatePolynomialx,K

x6+2x3+9

(4)

UnivariatePolynomialt,K

0

(5)

UnivariatePolynomialt,K,t,x,y

2t312zt21

(6)

IsZeroDimensionalK,t,x,y

true

(7)

aliasα=RootOfZ3+Z+1,β=RootOfZ5+Z4+2Z+3

α,β

(8)

L6x2β+7y2α+3x4,4y2+4x2y26yα3

L3x4+7y2α+6x2β,3yα3+2x2y22y2

(9)

UnivariatePolynomialx,L

4x12+16x10β+16x8β28x1032x8β32x6β2+4x8+16x6β+42x4α2+16x4β2+84x2α2β21x442x2β

(10)

UnivariatePolynomialy,L

24α2βy3+36α2βy212α2y3+28y5+36α2y224βy327α2y12y3+27αy+27y

(11)

See Also

alias

Groebner[UnivariatePolynomial]

PolynomialIdeals

PolynomialIdeals[IsZeroDimensional]