PolynomialIdeals
UnivariatePolynomial
compute the smallest univariate polynomial in an ideal
Calling Sequence
Parameters
Description
Examples
UnivariatePolynomial(v, J, X)
v
-
variable name
J
polynomial ideal or a list or set of generator polynomials
X
(optional) set of variable names
The UnivariatePolynomial command computes a univariate polynomial in v of least degree that is contained in the ideal J. If no such polynomial exists, then zero is returned. A zero-dimensional ideal contains a univariate polynomial in every variable.
The first argument must be the variable in which a univariate polynomial is to be computed. The second argument must be a polynomial ideal. An optional third argument overrides the default ring variables.
with⁡PolynomialIdeals:
J≔x3−y2,y−x
J≔y−x,x3−y2
UnivariatePolynomial⁡x,J
x3−x2
K≔x3−y3+1,y2+2,12⁢z⁢t2−2⁢t3+1
K≔y2+2,−2⁢t3+12⁢z⁢t2+1,x3−y3+1
UnivariatePolynomial⁡x,K
x6+2⁢x3+9
UnivariatePolynomial⁡t,K
0
UnivariatePolynomial⁡t,K,t,x,y
2⁢t3−12⁢z⁢t2−1
IsZeroDimensional⁡K,t,x,y
true
alias⁡α=RootOf⁡Z3+Z+1,β=RootOf⁡Z5+Z4+2⁢Z+3
α,β
L≔6⁢x2⁢β+7⁢y2⁢α+3⁢x4,−4⁢y2+4⁢x2⁢y2−6⁢y⁢α3
L≔3⁢x4+7⁢y2⁢α+6⁢x2⁢β,−3⁢y⁢α3+2⁢x2⁢y2−2⁢y2
UnivariatePolynomial⁡x,L
4⁢x12+16⁢x10⁢β+16⁢x8⁢β2−8⁢x10−32⁢x8⁢β−32⁢x6⁢β2+4⁢x8+16⁢x6⁢β+42⁢x4⁢α2+16⁢x4⁢β2+84⁢x2⁢α2⁢β−21⁢x4−42⁢x2⁢β
UnivariatePolynomial⁡y,L
−24⁢α2⁢β⁢y3+36⁢α2⁢β⁢y2−12⁢α2⁢y3+28⁢y5+36⁢α2⁢y2−24⁢β⁢y3−27⁢α2⁢y−12⁢y3+27⁢α⁢y+27⁢y
See Also
alias
Groebner[UnivariatePolynomial]
PolynomialIdeals[IsZeroDimensional]
Download Help Document