SylvesterMatrix - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


PolynomialTools[Approximate]

  

SylvesterMatrix

  

construct a Sylvester matrix of a polynomial

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SylvesterMatrix(F, G, vars)

SylvesterMatrix(F, G, vars, degree)

SylvesterMatrix(F, G, vars, degree, rtableoptions=[options])

Parameters

F

-

polynom

G

-

polynom

vars

-

set or list of variables

degree

-

(optional) non-negative integer, defaults to 1

options

-

(optional) options that are passed to the Matrix constructor

Description

• 

The SylvesterMatrix command is a generalized and multivariate version of the LinearAlgebra:-SylvesterMatrix command.

• 

A (generalized) Sylvester matrix is matrix that has full rank only if the input polynomials have a greatest common divisor of total degree less than degree (1 by default).

• 

A Sylvester matrix can be considered to be a block matrix composed of two convolution matrices and this command simply calls the ConvolutionMatrix command.

• 

The approximate polynomial division command GCD solves an approximate nullspace problem on the output of this command.

Examples

withPolynomialTools:-Approximate:

fx2+y21;gx2+xy+y+1

fx2+y21

gx2+xy+y+1

(1)

S1SylvesterMatrixf,g,x,y

S1−1001000−1001000−1101100100000110100001010010001011010001001000

(2)

Maximal rank, means degree( gcd(f,g) ) < 1

minupperboundS1LinearAlgebra:-RankS1

0

(3)

SylvesterMatrixf&comma;g&comma;x&comma;y&comma;2&comma;rtableoptions=datatype=complex8

−1.+0.I1.+0.I0.+0.I0.+0.I0.+0.I1.+0.I1.+0.I1.+0.I0.+0.I1.+0.I1.+0.I0.+0.I

(4)

dx2y2+1&semi;f1fd&semi;g1gd

dx2y2+1

f1x2+y21x2y2+1

g1x2+xy+y+1x2y2+1

(5)

Maximal rank, means degree( gcd(f,g) ) < 3

S2SylvesterMatrixf1&comma;g1&comma;x&comma;y&comma;3

Maximal rank, means degree( gcd(f,g) ) < 3

minupperboundS2LinearAlgebra:-RankS2

0

(6)

S3SylvesterMatrixf1&comma;g1&comma;x&comma;y&comma;2

Rank deficiency of exactly 1, means degree( gcd(f,g) ) = 2 exactly

minupperboundS3LinearAlgebra:-RankS3

1

(7)

Compatibility

• 

The PolynomialTools:-Approximate:-SylvesterMatrix command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

ConvolutionMatrix

LinearAlgebra:-SylvesterMatrix