ShiftEquivalent - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


PolynomialTools

  

ShiftEquivalent

  

test whether two polynomials are shift equivalent

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ShiftEquivalent(f,g,x)

ShiftEquivalent(f,g,x,T)

Parameters

f, g

-

polynomials in x

x

-

indeterminate

T

-

(optional) type

Description

• 

The ShiftEquivalent command determines whether the two polynomials f,g are shift equivalent w.r.t. the variable x, that is, whether there is an h independent of x satisfying lcgfx+h=lcfgx, where lc denotes the leading coefficient with respect to x. It returns h, if it exists, and otherwise FAIL.

• 

If the optional argument T is specified, then ShiftEquivalent returns FAIL even if h exists but is not of type T. This is more efficient than first calling ShiftEquivalent without the optional argument and then checking whether the return value is of type T.

• 

It is assumed that both input polynomials are collected w.r.t. the variable x.

• 

If f,g are nonconstant w.r.t. x, then h is uniquely determined. If both are nonzero and constant w.r.t. x, or if both are zero, then the return value is 0.

Examples

withPolynomialTools:

ShiftEquivalentx2+x+1,x2x+1,x

−1

(1)

Translatex2+x+1,x,

x2x+1

(2)

ShiftEquivalentx2+1,x2x+1,x

FAIL

(3)

Leading coefficients do not matter.

ShiftEquivalent2x1,x+12,x

1

(4)

Translate2x1,x,

1+2x

(5)

ShiftEquivalent2x1,x,x

12

(6)

ShiftEquivalent2x1,x,x,integer

FAIL

(7)

ShiftEquivalentx,x+n,x

n

(8)

See Also

LREtools[dispersion]

PolynomialTools

PolynomialTools[ShiftlessDecomposition]

PolynomialTools[Translate]