PolynomialTools
ShiftlessDecomposition
compute a shiftless decomposition of a univariate polynomial
Calling Sequence
Parameters
Description
Examples
References
ShiftlessDecomposition(f,x)
f
-
polynomial in x
x
indeterminate
The ShiftlessDecomposition command computes a shiftless decomposition [c,[[g1,[[h11,e11],[h12,e12],...]],[g2,[[h21,e21],[h22,e22],...]],...]] of f w.r.t. x.
It satisfies the following properties.
f=c⁢g1⁡x+h11e11⁢g1⁡x+h12e12⁢...⁢g2⁡x+h21e21⁢g2⁡x+h22e22⁢...
g1,... are squarefree and pairwise shift coprime, that is, for 1≤i,j and all integers h, we have gcd⁡gi⁡x,gj⁡x+h≠1 if and only if i=j and h=0
c is constant w.r.t. x, and g1,... are nonconstant primitive polynomials w.r.t. x.
The hij and eij are non-negative integers with 0=hi1<hi2<... and 0<eij for all i,j.
The shiftless decomposition is unique up to reordering and multiplication by units. The gi are ordered by ascending degree in x, but the ordering within the same degree is not determined.
If f is constant w.r.t. x, then the return value is f,.
Partial factorizations of the input are not taken into account.
with⁡PolynomialTools:
ShiftlessDecomposition⁡expand⁡pochhammer⁡x,3⁢pochhammer⁡x,5,x
1,x,0,2,1,2,2,2,3,1,4,1
ShiftlessDecomposition⁡x6−1⁢x10−1⁢x15−1,x
1,x−1,0,3,2,2,x2−x+1,0,1,1,2,x4+x3+x2+x+1,0,2,x12−2⁢x11+2⁢x10−x9+2⁢x7−3⁢x6+2⁢x5−x3+2⁢x2−2⁢x+1,0,1
Gerhard, J.; Giesbrecht, M.; Storjohann, A.; and Zima, E.V. "Shiftless decomposition and polynomial-time rational summation." Proceedings International Symposium on Symbolic and Algebraic Computation, pp. 119-126. ed. J.R. Sendra. 2003.
See Also
gcd
PolynomialTools[GreatestFactorialFactorization]
PolynomialTools[ShiftEquivalent]
PolynomialTools[Translate]
sqrfree
Download Help Document