Psi - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Psi

the Digamma and Polygamma functions

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Psi(x)

Ψx

Psi(n,x)

Ψn,x

Parameters

x

-

expression

n

-

expression

Description

• 

Psi(x) is the digamma function,

Ψx=ⅆⅆxlnΓx=ⅆⅆxΓxΓx

• 

Psi(n, x) is the nth polygamma function, which is the nth derivative of the digamma function when n is a nonnegative integer.

• 

You can enter the command Psi using either the 1-D or 2-D calling sequence.

• 

If n is an integer greater than one, Psi(n) + gamma is a rational number. (gamma is Euler's constant.) For small values of n, Psi(n) computes as a sum of gamma and a rational number. To perform this computation for larger values of n, use expand.

Ψn,x=ⅆnⅆxnΨx

Ψ0,x=Ψx

• 

Psi(n, x) is extended to complex n, including negative integer indices, by the balanced polygamma formula of Espinosa and Moll

Ψw,z=ζ1w+1,z+γ+Ψwζ0w+1,zΓw

  

where Ζ is the Hurwitz zeta function.

Examples

Ψ2

1γ

(1)

Ψ1,2

1+π26

(2)

Ψ3.5+4.7I

1.717883835+1.001470255I

(3)

Ψ7,2.2+3.3I

−0.02713341434+0.003825068416I

(4)

Ψ2,1.543

−0.7957394716

(5)

Ψ1.342+I,3.5233

−0.69889190050.7978763419I

(6)

Ψ50

138812566871391350266313099044504245996706400γ

(7)

Ψ51

Ψ51

(8)

Evaluating Psi(51) directly is faster than expanding and then evaluating.

expandΨ51

γ+139432375772240549607593099044504245996706400

(9)

evalf

3.921989673

(10)

evalfΨ51

3.921989673

(11)

Unlike the negapolygamma of Gosper, the balanced polygamma at n=−1 differs from lnGAMMA by a constant

convertlnGAMMAx,ΨΨ1,x

ln2π2

(12)

References

  

Espinosa, O., and Moll, V. "A Generalized Polygamma Function." Integral Transforms and Special Functions, (April 2004): 101-115.

See Also

expand

GAMMA

initialfunctions

Zeta