AccurateQSummation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


QDifferenceEquations

  

AccurateQSummation

  

sum the solutions of a q-shift operator

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

AccurateQSummation(L, Q, x)

Parameters

L

-

polynomial in Q over C(q)(x)

Q

-

name; denote the q-shift operator

x

-

name (that Q acts on)

Description

• 

This AccurateQSummation(L,Q,x) calling sequence computes an operator M of minimal order such that any solution f of L has an anti-qdifference which is a solution of M.

• 

If the order of L equals the order of M then the output is a list [M, r] such that r(f) is an anti-qdifference of f and also a solution of M for every solution f of L. If the order of L is not equal to M then only M is given in the output. In this case M equals LΔ where Δ=Q1.

• 

Q is the q-shift operator with respect to x, defined by Qx=qx.

Examples

withQDifferenceEquations:

Lq1+q2Q2+q2q41Q+q51+q2

Lqq21Q2+q2q41Qq5q21

(1)

AcAccurateQSummationL,Q,x

Acq4q4q3q+1q2+1qQq4q3q+1+Q2q4q3q+1,q3+q1q4q3q+1Qq4q3q+1

(2)

Ltop1,Ac;rtop2,Ac

Ltq4q4q3q+1q2+1qQq4q3q+1+Q2q4q3q+1

rtq3+q1q4q3q+1Qq4q3q+1

(3)

Regarding the meaning of the second element rt in the output of AccurateQSummation, since L is the minimal annihilator of f=qx3+x, g=rtf is an anti-qdifference of f:

AOreTools:-SetOreRingx,q,qshift:

fqx3+x

fqx3+x

(4)

rOreTools:-Converters:-FromPolyToOrePolyrt,Q:

gnormalOreTools:-Applyr,f,A

gqx2+q2+q+1xq31

(5)

check that Q1g=f:

normalevalg,x=qxgf

0

(6)

References

  

Abramov, S.A., and van Hoeij, M. "Integration of Solutions of Linear Functional Equations." Integral Transformations and Special Functions. Vol. 8 No. 1-2. (1999): 3-12.

See Also

DEtools/integrate_sols

OreTools[Converters][FromPolyToOrePoly]

OreTools[MathOperations][AccurateIntegration]

OreTools[SetOreRing]

SumTools[IndefiniteSum][AccurateSummation]