QDifferenceEquations
AccurateQSummation
sum the solutions of a q-shift operator
Calling Sequence
Parameters
Description
Examples
References
AccurateQSummation(L, Q, x)
L
-
polynomial in Q over C(q)(x)
Q
name; denote the q-shift operator
x
name (that Q acts on)
This AccurateQSummation(L,Q,x) calling sequence computes an operator M of minimal order such that any solution f of L has an anti-qdifference which is a solution of M.
If the order of L equals the order of M then the output is a list [M, r] such that r(f) is an anti-qdifference of f and also a solution of M for every solution f of L. If the order of L is not equal to M then only M is given in the output. In this case M equals L⁢Δ where Δ=Q−1.
Q is the q-shift operator with respect to x, defined by Q⁡x=q⁢x.
with⁡QDifferenceEquations:
L≔−q⁢−1+q2⁢Q2+q2⁢q4−1⁢Q+−q5⁢−1+q2
L≔−q⁢q2−1⁢Q2+q2⁢q4−1⁢Q−q5⁢q2−1
Ac≔AccurateQSummation⁡L,Q,x
Ac≔q4q4−q3−q+1−q2+1⁢q⁢Qq4−q3−q+1+Q2q4−q3−q+1,q3+q−1q4−q3−q+1−Qq4−q3−q+1
Lt≔op⁡1,Ac;rt≔op⁡2,Ac
Lt≔q4q4−q3−q+1−q2+1⁢q⁢Qq4−q3−q+1+Q2q4−q3−q+1
rt≔q3+q−1q4−q3−q+1−Qq4−q3−q+1
Regarding the meaning of the second element rt in the output of AccurateQSummation, since L is the minimal annihilator of f=q⁢x3+x, g=rt⁡f is an anti-qdifference of f:
A≔OreTools:-SetOreRing⁡x,q,qshift:
f≔q⁢x3+x
r≔OreTools:-Converters:-FromPolyToOrePoly⁡rt,Q:
g≔normal⁡OreTools:-Apply⁡r,f,A
g≔q⁢x2+q2+q+1⁢xq3−1
check that Q−1⁢g=f:
normal⁡eval⁡g,x=q⁢x−g−f
0
Abramov, S.A., and van Hoeij, M. "Integration of Solutions of Linear Functional Equations." Integral Transformations and Special Functions. Vol. 8 No. 1-2. (1999): 3-12.
See Also
DEtools/integrate_sols
OreTools[Converters][FromPolyToOrePoly]
OreTools[MathOperations][AccurateIntegration]
OreTools[SetOreRing]
SumTools[IndefiniteSum][AccurateSummation]
Download Help Document