QDifferenceEquations
Closure
closure of a q-shift operator with polynomial coefficients
Calling Sequence
Parameters
Returns
Description
Options
Examples
Compatibility
Closure(L, Qx, x, q, p, func, options)
L
-
polynomial in Qx with coefficients which are polynomials in x over the field of rational functions in q
Qx
name, variable denoting the q-shift operator x↦q⁢x
x
variable name
q
either a variable name, or a nonzero constant, or an equation of the form name=constant
p
(optional) set of irreducible polynomials in x, or a single such polynomial
func
(optional) procedure
options
(optional) equation(s) of the form 'keyword'=value, where the keyword is either order or maximal
list of polynomials in Qx with coefficients which are polynomials in x over the field of rational functions in q
Let k be a field of characteristic 0. Denote by F the q-shift polynomial ring consisting of elements, each of which is a polynomial in Qx, with coefficients which are polynomials in x over k⁡q. For a given operator L∈F, the Closure(L,Qx,x,q) calling sequence constructs a closure of L in the q-shift polynomial ring F.
The output is a list of elements in F. Each element R in this list represents a generator of the closure of L. For example, there exists f∈kqx and P∈F, such that the torsion relation P·L=f·R holds.
The Closure(L,Qx,x q,p) calling sequence constructs a local closure of L at the irreducible(s) p. The output is a list of generators of the local closure of L. For example, each element R in the list is such that the torsion relation P·L=gi·R holds for some operator P, where g∈p and i∈ℕ.
The parameter q does not have to be a variable. A constant value, such as q=2 is possible as well, including the case of a root of unity.
The optional argument func, if specified, is applied to the coefficients of the result with respect to Qx; typical examples are expand or factor.
Note that setting infolevel[Closure]:=3 will cause some diagnostics to be printed during the computation.
'order'=o, where o is a monomial order
If this option is given, the Groebner[Basis] command, with respect to the given monomial order, will be applied to the computed closure.
'maximal'=truefalse (default: false)
This option only has an effect if a local closure is requested. If maximal=true (or maximal for short) is specified, then each element R in the output list is such that the torsion relation P·L=g⁡qj⁢xi·R holds for some operator P, where g∈p, i∈ℕ, and j∈ℤ. In other words, all generators for the q-shift-equivalence class(es) represented by p are computed and returned.
with⁡QDifferenceEquations
AccurateQSummation,AreSameSolution,Closure,Desingularize,ExtendSeries,IsQHypergeometricTerm,IsSolution,PolynomialSolution,QBinomial,QBrackets,QDispersion,QECreate,QEfficientRepresentation,QFactorial,QGAMMA,QHypergeometricSolution,QMultiplicativeDecomposition,QPochhammer,QPolynomialNormalForm,QRationalCanonicalForm,QSimpComb,QSimplify,RationalSolution,RegularQPochhammerForm,SeriesSolution,UniversalDenominator,Zeilberger
Compute a closure of the following linear q-shift operator when q=12:
L≔x−3⁢q⁢x−3⁢Qx+q2⁢x−32⁢q3⁢x−3
C≔Closure⁡L,Qx,x,q=12
C≔12⁢x2−92⁢x+9⁢Qx+x3128−3⁢x28+45⁢x8−27,−3⁢x4+9⁢Qx3+−31024⁢x2−9128⁢x−40516⁢Qx2+−92048⁢x2+81256⁢x−8116⁢Qx,8⁢x63−12821⁢Qx4+14032⁢x2−556⁢x+1917⁢Qx3+−399⁢x128−634⁢Qx2+−512048⁢x2+243128⁢x−1354⁢Qx,−3⁢x2+9⁢Qx2+−3256⁢x2−964⁢x−40516⁢Qx−9⁢x2512+81⁢x128−8116,16⁢x63−12821⁢Qx3+11008⁢x2−528⁢x+1917⁢Qx2+−399⁢x64−634⁢Qx−51⁢x2512+243⁢x64−1354
Compute a local closure of L, now with a symbolic q, at p=−q3⁢x3+1, with factored coefficients:
p≔−13⁢q3⁢x+1
p≔−q3⁢x3+1
C≔Closure⁡L,Qx,x,q,p,factor
C≔x−3⁢q⁢x−3⁢Qx+q2⁢x−32⁢q3⁢x−3,−3⁢q2⁢x+9⁢Qx3+−3⁢q10⁢x2−9⁢q7⁢x+18⁢q6⁢x+9⁢q5⁢x+9⁢q4⁢x−27⁢q4−9⁢q3⁢x+27⁢q3−27⁢Qx2+9⁢q−1⁢q4⁢x−3⁢q3⁢x−3⁢q3⁢Qx,q4⁢x−3⁢Qx4q⁢q2+q+1⁢q−12⁢q+12+q13⁢x2+3⁢q10⁢x−6⁢q8⁢x−3⁢q7⁢x+9⁢q7+9⁢q6−9⁢q5−18⁢q4−9⁢q3+9⁢q2+9⁢q+9⁢Qx3q⁢q2+q+1⁢q−12⁢q+12+9⁢q2+q+1⁢q6⁢x−q4⁢x−2⁢q3⁢x+6⁢q3+3⁢q2−3⁢Qx2q+1−9⁢q4⁢x−3⁢3⁢q5⁢x+3⁢q4⁢x+2⁢q3⁢x−6⁢q2−9⁢q−9⁢q3⁢Qxq+1
Compute a local closure of L at the q-shift equivalence class represented by p:
C≔Closure⁡L,Qx,x,q,p,maximal,factor
C≔x−3⁢q⁢x−3⁢Qx+q2⁢x−32⁢q3⁢x−3,−3⁢q2⁢x+9⁢Qx3+−3⁢q10⁢x2−9⁢q7⁢x+18⁢q6⁢x+9⁢q5⁢x+9⁢q4⁢x−27⁢q4−9⁢q3⁢x+27⁢q3−27⁢Qx2+9⁢q−1⁢q4⁢x−3⁢q3⁢x−3⁢q3⁢Qx,q4⁢x−3⁢Qx4q⁢q2+q+1⁢q−12⁢q+12+q13⁢x2+3⁢q10⁢x−6⁢q8⁢x−3⁢q7⁢x+9⁢q7+9⁢q6−9⁢q5−18⁢q4−9⁢q3+9⁢q2+9⁢q+9⁢Qx3q⁢q2+q+1⁢q−12⁢q+12+9⁢q2+q+1⁢q6⁢x−q4⁢x−2⁢q3⁢x+6⁢q3+3⁢q2−3⁢Qx2q+1−9⁢q4⁢x−3⁢3⁢q5⁢x+3⁢q4⁢x+2⁢q3⁢x−6⁢q2−9⁢q−9⁢q3⁢Qxq+1,−3⁢q⁢x+9⁢Qx2+−3⁢q8⁢x2−9⁢q6⁢x+18⁢q5⁢x+9⁢q4⁢x−27⁢q4+9⁢q3⁢x+27⁢q3−9⁢q2⁢x−27⁢Qx+9⁢q−1⁢q3⁢x−3⁢q2⁢x−3⁢q3,q3⁢x−3⁢Qx3q⁢q2+q+1⁢q−12⁢q+12+q11⁢x2+3⁢q9⁢x−6⁢q7⁢x+9⁢q7−3⁢q6⁢x+9⁢q6−9⁢q5−18⁢q4−9⁢q3+9⁢q2+9⁢q+9⁢Qx2q⁢q2+q+1⁢q−12⁢q+12+9⁢q2+q+1⁢q5⁢x−q3⁢x+6⁢q3−2⁢q2⁢x+3⁢q2−3⁢Qxq+1−9⁢q3⁢x−3⁢3⁢q4⁢x+3⁢q3⁢x+2⁢q2⁢x−6⁢q2−9⁢q−9⁢q3q+1
Verify the torsion property:
A≔OreTools:-SetOreRing⁡x,q,qshift:
L≔OreTools:-Converters:-FromPolyToOrePoly⁡L,Qx
L≔OrePoly⁡q2⁢x−32⁢q3⁢x−3,x−3⁢q⁢x−3
R2≔OreTools:-Converters:-FromPolyToOrePoly⁡C2,Qx
R2≔OrePoly⁡0,9⁢q−1⁢q4⁢x−3⁢q3⁢x−3⁢q3,−3⁢q10⁢x2−9⁢q7⁢x+18⁢q6⁢x+9⁢q5⁢x+9⁢q4⁢x−27⁢q4−9⁢q3⁢x+27⁢q3−27,−3⁢q2⁢x+9
OreTools:-Remainderright⁡R2,L,A,P2
OrePoly⁡0
P2≔OreTools:-Converters:-FromOrePolyToPoly⁡P2,Qx
P2≔9⁢q3⁢q−1⁢Qxq3⁢x−3−3⁢Qx2q3⁢x−3
denom⁡P2
q3⁢x−3
R4≔OreTools:-Converters:-FromPolyToOrePoly⁡C4,Qx
R4≔OrePoly⁡9⁢q−1⁢q3⁢x−3⁢q2⁢x−3⁢q3,−3⁢q8⁢x2−9⁢q6⁢x+18⁢q5⁢x+9⁢q4⁢x−27⁢q4+9⁢q3⁢x+27⁢q3−9⁢q2⁢x−27,−3⁢q⁢x+9
OreTools:-Remainderright⁡R4,L,A,P4
P4≔OreTools:-Converters:-FromOrePolyToPoly⁡P4,Qx
P4≔9⁢q3⁢q−1q2⁢x−3−3⁢Qxq2⁢x−3
denom⁡P4
q2⁢x−3
This is, in fact, a negative q-shift of p:
numer⁡eval⁡p,x=xq
−q2⁢x+3
Compute a closure of the following operator when q=−1, a second root of unity:
L≔x+22+x+1⁢x−22⁢Qx
infolevelClosure≔3:
C≔Closure⁡L,Qx,x,−1
Closure: "-1 is a 2 root of unity" Closure: "compute the matrix representation of the input operator" Closure: "the matrix representation is Matrix(2, 2, [[(x+2)^2,(x+1)*(x-2)^2],[(1-x)*(-x-2)^2*eta,(-x+2)^2]])" Closure: "compute the candidate primes and bounds for their multiplicities" Closure: "the candidate primes and bounds for their multiplicities are [[x-2, 2], [x+2, 2]]" Closure: "compute the local closures" Closure: "compute P such that P.L = (x-2)^j.R, 1<=j<=2" Closure: "compute P such that P.L = (x+2)^j.R, 1<=j<=2"
C≔x+22+x+1⁢x−22⁢Qx,x2−x−2⁢Qx3+−x2−4⁢x−4⁢Qx2+x−2⁢Qx,x2−1⁢Qx3+Qx,x2−x−2⁢Qx3+−x2−4⁢x−4⁢Qx2+x−2⁢Qx,−x2−x+2⁢Qx2+x2−4⁢x+4⁢Qx+x+2,1−x⁢Qx2+x2−4⁢x+4⁢Qx+x+3,−x2−x+2⁢Qx2+x2−4⁢x+4⁢Qx+x+2
The QDifferenceEquations[Closure] command was introduced in Maple 18.
For more information on Maple 18 changes, see Updates in Maple 18.
See Also
Groebner
Ore_algebra
QDifferenceEquations[Desingularize]
Download Help Document