QDifferenceEquations
QEfficientRepresentation
construct the four efficient representations of a q-hypergeometric term
Calling Sequence
Parameters
Description
Examples
References
QEfficientRepresentation[1](H, q, n)
QEfficientRepresentation[2](H, q, n)
QEfficientRepresentation[3](H, q, n)
QEfficientRepresentation[4](H, q, n)
H
-
q-hypergeometric term in q^n
q
name used as the parameter q, usually q
n
variable
Let H be a q-hypergeometric term in qn. The QEfficientRepresentation[i](H,q,n) command constructs the ith efficient representation of H of the form H⁡n=C⁢αn⁢V⁡qn⁢Q⁡n where C, α are constant and Q⁡n is a product of QPochhammer-function values and their reciprocals. Additionally,
Q⁡n has the minimal number of factors,
V⁡qn is a rational function which is minimal in one sense or another, depending on the particular q-rational canonical form chosen to represent the certificate of H⁡qn.
If i=1 then degree⁡denom⁡V is minimal; if i=2 then degree⁡numer⁡V is minimal; if i=3 then degree⁡numer⁡V+degree⁡denom⁡V is minimal, and under this condition, degree⁡denom⁡V is minimal; if i=4 then degree⁡numer⁡V+degree⁡denom⁡V is minimal, and under this condition, degree⁡numer⁡V is minimal.
If QEfficientRepresentation is called without an index, the first efficient representation is constructed.
with⁡QDifferenceEquations:
H≔Product⁡qk+q2⁢qk+1⁢qk+q5−q3⁢qk+q4−q2⁢q3⁢qk+q2−1⁢q12⁢qk+q2−1qk+q5⁢qk+q42⁢q4⁢qk+1⁢qk+q2−1⁢q2⁢qk+q2−1,k=0..n−1
H≔∏k=0n−1⁡qk+q2⁢qk+1⁢qk+q5−q3⁢qk+q4−q2⁢q3⁢qk+q2−1⁢q12⁢qk+q2−1qk+q5⁢qk+q42⁢q4⁢qk+1⁢qk+q2−1⁢q2⁢qk+q2−1
QEfficientRepresentation1⁡H,q,n
q66⁢qn+q2−1q22⁢q3+qn2⁢q4+qn2⁢q+qn⁢q2+qn⁢qn+q2−1q11⁢qn+q2−1q10⁢qn+q2−1q9⁢qn+q2−1q8⁢qn+q2−1q7⁢qn+q2−1q6⁢qn+q2−1q5⁢qn+q2−1q4⁢qn+q2−1q3⁢qn+q2−1q⁢q2+qn−1⁢q2−12q6n⁢QPochhammer⁡1−q4+q2,q,n⁢QPochhammer⁡1−q5+q3,q,n2⁢q2−12⁢q3+12⁢q4+12⁢q+1⁢q2+1⁢q11+q2−1⁢q10+q2−1⁢q9+q2−1⁢q8+q2−1⁢q7+q2−1⁢q6+q2−1⁢q5+q2−1⁢q4+q2−1⁢q3+q2−1⁢q2+q−1⁢QPochhammer⁡−q4,q,n⁢QPochhammer⁡−1q5,q,n
QEfficientRepresentation2⁡H,q,n
2⁢q5−q3+1⁢q2+q−1⁢q+1⁢q2+1⁢q4−q2+12⁢q3−q+12⁢q3+qn⁢q4+qn⁢q2−12q6n⁢QPochhammer⁡−q12q2−1,q,n⁢QPochhammer⁡−q3q2−1,q,nq5⁢q4+1⁢q3+qn−q2⁢qn+q4−q22⁢qn+1q3⁢qn+1q2⁢qn+1q⁢qn+1⁢qn+q2−1q⁢q2+qn−1⁢qn+q5−q3⁢QPochhammer⁡−1q4,q,n⁢QPochhammer⁡−1q5,q,n
QEfficientRepresentation3⁡H,q,n
q2⁢q3−q+1⁢q4−q2+1⁢q3+qn2⁢q4+qn2⁢q+qn⁢q2+qn⁢qn+q2−1q2⁢q2−12q6n⁢QPochhammer⁡1−q5+q3,q,n⁢QPochhammer⁡−q12q2−1,q,nq3+12⁢q4+12⁢q+1⁢q2+1⁢2⁢q2−1⁢q3+qn−q⁢qn+q4−q2⁢QPochhammer⁡−q4,q,n⁢QPochhammer⁡−1q5,q,n
QEfficientRepresentation4⁡H,q,n
2⁢q4−q2+1⁢q3−q+1⁢q+1⁢q2+1⁢q3+qn⁢q4+qn⁢qn+q2−1q2⁢q2−12q6n⁢QPochhammer⁡−q12q2−1,q,n⁢QPochhammer⁡1−q5+q3,q,nq4⁢2⁢q2−1⁢q4+1⁢qn+1q3⁢qn+1q2⁢qn+1q⁢qn+1⁢q3+qn−q⁢qn+q4−q2⁢QPochhammer⁡−1q5,q,n⁢QPochhammer⁡−1q4,q,n
RegularQPochhammerForm⁡H,q,n
q2−12q6n⁢QPochhammer⁡−q12q2−1,q,n⁢QPochhammer⁡1−q5+q3,q,n⁢QPochhammer⁡−1,q,n⁢QPochhammer⁡−1q2,q,n⁢QPochhammer⁡1−q4+q2,q,n⁢QPochhammer⁡−q3q2−1,q,nQPochhammer⁡−q4,q,n⁢QPochhammer⁡−q2q2−1,q,n⁢QPochhammer⁡−1q4,q,n2⁢QPochhammer⁡1−q2+1,q,n⁢QPochhammer⁡−1q5,q,n
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Efficient Representations of (q-)Hypergeometric Terms and the Assignment Problem." Submitted.
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.
See Also
QDifferenceEquations[QMultiplicativeDecomposition]
QDifferenceEquations[QObjects]
QDifferenceEquations[QRationalCanonicalForm]
QDifferenceEquations[RegularQPochhammerForm]
Download Help Document