QDifferenceEquations
QPochhammer
q-Pochhammer symbol
QBinomial
q-binomial coefficient
QBrackets
q-brackets
QFactorial
q-factorial
QGAMMA
q-Gamma
Calling Sequence
Parameters
Description
Examples
References
QPochhammer(a, q, infinity)
QPochhammer(a, q, k)
QBinomial(n, k, q)
QBrackets(k, q)
QFactorial(k, q)
QGAMMA(a, q)
a
-
algebraic expression
q
name used as the parameter q, or an integer power of a name
k
symbolic integer value
n
The QDifferenceEquations package supports five q-hypergeometric terms. They are q-Pochhammer symbol, q-binomial coefficient, q-brackets, q-factorial, and q-Gamma, which correspond to the five functions QPochhammer, QBinomial, QBrackets, QFactorial, and QGAMMA.
These functions are placeholders for the q-objects. The command expand allows expansion of these objects. The command convert⁡...,QPochhammer allows the re-write of QBinomial, QBrackets, QFactorial, and QGAMMA in terms of QPochhammer symbols.
The five q-hypergeometric objects are defined as follows.
QPochhammer⁡a,q,∞=∏j=0∞⁡1−a⁢qj
QPochhammer⁡a,q,k=∏j=0k−1⁡1−a⁢qj0<k1k=0∏j=k−1⁡11−a⁢qjk<0
Note that QPochhammer⁡seq⁡ai,i=1..n,q,k (the compact Gasper and Rahman notation) means ∏i=1n⁡QPochhammer⁡ai,q,k.
QBinomial⁡n,k,q=QPochhammer⁡q,q,nQPochhammer⁡q,q,k⁢QPochhammer⁡q,q,n−k
QBrackets⁡k,q=qk−1q−1
QFactorial⁡k,q=QPochhammer⁡q,q,k1−qk
QGAMMA⁡z,q=QPochhammer⁡q,q,∞⁢1−q1−zQPochhammer⁡qz,q,∞
The commands QSimpComb and QSimplify are for simplification of expressions involving these q-objects.
This implementation is mainly based on the implementation by H. Boeing, W. Koepf. See the References section.
with⁡QDifferenceEquations:
expand⁡QPochhammer⁡a,q,4
1−a⁢−a⁢q+1⁢−a⁢q2+1⁢−a⁢q3+1
expand⁡QPochhammer⁡a,q,−4
11−aq4⁢1−aq3⁢1−aq2⁢1−aq
expand⁡QBrackets⁡k,q
qk−1q−1
convert⁡QBinomial⁡n,k,q,QPochhammer
QPochhammer⁡q,q,nQPochhammer⁡q,q,k⁢QPochhammer⁡q,q,n−k
convert⁡QGAMMA⁡z,q,QPochhammer
QPochhammer⁡q,q,∞⁢1−q1−zQPochhammer⁡qz,q,∞
convert⁡QFactorial⁡k,q,QPochhammer
QPochhammer⁡q,q,k1−qk
H≔q2−12q6n⁢QPochhammer⁡1−q5+q3,q,n⁢QPochhammer⁡1−q4+q2,q,n⁢QPochhammer⁡−1q2−1⁢q3,q,n⁢QPochhammer⁡−1q2,q,n⁢QPochhammer⁡−1q2−1⁢q12,q,n⁢QPochhammer⁡−1,q,nQPochhammer⁡−1q2−1⁢q2,q,n⁢QPochhammer⁡−1q5,q,n⁢QPochhammer⁡−1q4,q,n2⁢QPochhammer⁡−q4,q,n⁢QPochhammer⁡1−q2+1,q,n
H≔q2−12q6n⁢QPochhammer⁡1−q5+q3,q,n⁢QPochhammer⁡1−q4+q2,q,n⁢QPochhammer⁡−q3q2−1,q,n⁢QPochhammer⁡−1q2,q,n⁢QPochhammer⁡−q12q2−1,q,n⁢QPochhammer⁡−1,q,nQPochhammer⁡−q2q2−1,q,n⁢QPochhammer⁡−1q5,q,n⁢QPochhammer⁡−1q4,q,n2⁢QPochhammer⁡−q4,q,n⁢QPochhammer⁡1−q2+1,q,n
Compute the certificate of H (which is a rational function in qn):
QSimpComb⁡subs⁡n=n+1,HH
q5−q3+qn⁢q2+qn⁢1+qn⁢qn⁢q12+q2−1⁢qn⁢q3+q2−1⁢q4−q2+qnqn⁢q2+q2−1⁢q2+qn−1⁢q4+qn2⁢1+qn⁢q4⁢q5+qn
Boeing, H., and Koepf, W. "Algorithms for q-hypergeometric summation in computer algebra." Journal of Symbolic Computation. Vol. 11. (1999): 1-23.
See Also
QDifferenceEquations[IsQHypergeometricTerm]
QDifferenceEquations[QSimpComb]
Download Help Document