QBinomial - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


QDifferenceEquations

  

QPochhammer

  

q-Pochhammer symbol

  

QBinomial

  

q-binomial coefficient

  

QBrackets

  

q-brackets

  

QFactorial

  

q-factorial

  

QGAMMA

  

q-Gamma

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

QPochhammer(a, q, infinity)

QPochhammer(a, q, k)

QBinomial(n, k, q)

QBrackets(k, q)

QFactorial(k, q)

QGAMMA(a, q)

Parameters

a

-

algebraic expression

q

-

name used as the parameter q, or an integer power of a name

k

-

symbolic integer value

n

-

symbolic integer value

Description

• 

The QDifferenceEquations package supports five q-hypergeometric terms. They are q-Pochhammer symbol, q-binomial coefficient, q-brackets, q-factorial, and q-Gamma, which correspond to the five functions QPochhammer, QBinomial, QBrackets, QFactorial, and QGAMMA.

• 

These functions are placeholders for the q-objects. The command expand allows expansion of these objects. The command convert...,QPochhammer allows the re-write of QBinomial, QBrackets, QFactorial, and QGAMMA in terms of QPochhammer symbols.

• 

The five q-hypergeometric objects are defined as follows.

QPochhammera,q,=j=01aqj

QPochhammera&comma;q&comma;k=j=0k11aqj0<k1k=0j=k−111aqjk<0

  

Note that QPochhammerseqai&comma;i=1..n&comma;q&comma;k (the compact Gasper and Rahman notation) means i=1nQPochhammerai&comma;q&comma;k.

QBinomialn&comma;k&comma;q=QPochhammerq&comma;q&comma;nQPochhammerq&comma;q&comma;kQPochhammerq&comma;q&comma;nk

QBracketsk&comma;q=qk1q1

QFactorialk&comma;q=QPochhammerq&comma;q&comma;k1qk

QGAMMAz&comma;q=QPochhammerq&comma;q&comma;1q1zQPochhammerqz&comma;q&comma;

• 

The commands QSimpComb and QSimplify are for simplification of expressions involving these q-objects.

• 

This implementation is mainly based on the implementation by H. Boeing, W. Koepf. See the References section.

Examples

withQDifferenceEquations&colon;

expandQPochhammera&comma;q&comma;4

1aaq+1aq2+1aq3+1

(1)

expandQPochhammera&comma;q&comma;4

11aq41aq31aq21aq

(2)

expandQBracketsk&comma;q

qk1q1

(3)

convertQBinomialn&comma;k&comma;q&comma;QPochhammer

QPochhammerq&comma;q&comma;nQPochhammerq&comma;q&comma;kQPochhammerq&comma;q&comma;nk

(4)

convertQGAMMAz&comma;q&comma;QPochhammer

QPochhammerq&comma;q&comma;1q1zQPochhammerqz&comma;q&comma;

(5)

convertQFactorialk&comma;q&comma;QPochhammer

QPochhammerq&comma;q&comma;k1qk

(6)

Hq212q6nQPochhammer1q5+q3&comma;q&comma;nQPochhammer1q4+q2&comma;q&comma;nQPochhammer1q21q3&comma;q&comma;nQPochhammer1q2&comma;q&comma;nQPochhammer1q21q12&comma;q&comma;nQPochhammer1&comma;q&comma;nQPochhammer1q21q2&comma;q&comma;nQPochhammer1q5&comma;q&comma;nQPochhammer1q4&comma;q&comma;n2QPochhammerq4&comma;q&comma;nQPochhammer1q2+1&comma;q&comma;n

Hq212q6nQPochhammer1q5+q3&comma;q&comma;nQPochhammer1q4+q2&comma;q&comma;nQPochhammerq3q21&comma;q&comma;nQPochhammer1q2&comma;q&comma;nQPochhammerq12q21&comma;q&comma;nQPochhammer−1&comma;q&comma;nQPochhammerq2q21&comma;q&comma;nQPochhammer1q5&comma;q&comma;nQPochhammer1q4&comma;q&comma;n2QPochhammerq4&comma;q&comma;nQPochhammer1q2+1&comma;q&comma;n

(7)

Compute the certificate of H (which is a rational function in qn):

QSimpCombsubsn=n+1&comma;HH

q5q3+qnq2+qn1+qnqnq12+q21qnq3+q21q4q2+qnqnq2+q21q2+qn1q4+qn21+qnq4q5+qn

(8)

References

  

Boeing, H., and Koepf, W. "Algorithms for q-hypergeometric summation in computer algebra." Journal of Symbolic Computation. Vol. 11. (1999): 1-23.

See Also

QDifferenceEquations[IsQHypergeometricTerm]

QDifferenceEquations[QSimpComb]