QDifferenceEquations
QRationalCanonicalForm
construct four q-rational canonical forms of a rational function
Calling Sequence
Parameters
Description
Examples
References
QRationalCanonicalForm[1](F, q, n)
QRationalCanonicalForm[2](F, q, n)
QRationalCanonicalForm[3](F, q, n)
QRationalCanonicalForm[4](F, q, n)
F
-
rational function of n
q
name used as the parameter q, usually q
n
variable
Let F be a rational function of n over a field K of characteristic 0, q is a nonzero element of K which is not a root of unity. The QRationalCanonicalForm[i](F,q,n) command constructs the ith rational canonical form for F, i=1,2,3,4.
If QRationalCanonicalForm is called without an index, the first q-rational canonical form is constructed.
The output is a sequence of 5 elements z,r,s,u,v, called qRNF⁡F, where z is an element of K, and r,s,u,v are monic polynomials over K such that:
F=z⁢rs⁢Q⁡uvuv, gcd⁡u,v=1.
gcd⁡r,Qk⁡s for all integers k.
u⁡0≠0, v⁡0≠0.
gcd⁡r,Q·E⁡v=1, gcd⁡s,Q⁡u·v=1.
Note: Q is the automorphism of K(n) defined by Q⁡F⁡n=F⁡q⁢n.
The five-tuple z,r,s,u,v that satisfies the four conditions is a strict q-rational normal form for F. The rational function z⁢rs and uv are called the kernel and the shell of the qRNF⁡F, respectively.
Let φ=z,r,s,u,v be any qRNF of a rational function F. Then the degrees of the polynomials r and s are unique, and have minimal possible values in the sense that if F⁡n=p⁡n⁢Q⁡G⁡nq⁡n⁢G⁡n where p, q are polynomials in n, and G is a rational function of n, then degree⁡r≤degree⁡p and degree⁡s≤degree⁡q.
Additionally, if i=1 then degree⁡v is minimal; if i=2 then degree⁡u is minimal; if i=3 then degree⁡u+degree⁡v is minimal, and under this condition, degree⁡v is minimal; if i=4 then degree⁡u+degree⁡v is minimal, and under this condition, degree⁡u is minimal.
with⁡QDifferenceEquations:
ν≔n+q2⁢q11⁢n+1⁢n+q5−q3⁢n+q4−q2⁢q3⁢n+q2−1⁢q12⁢n+q2−1:
de≔n+q5⁢n+q42⁢q11⁢q4⁢n+1⁢n+q2−1⁢q2⁢n+q2−1:
F≔νde
F≔q2+n⁢n+1⁢q5−q3+n⁢q4−q2+n⁢q3⁢n+q2−1⁢q12⁢n+q2−1q5+n⁢q4+n2⁢q4⁢n+1⁢q2+n−1⁢q2⁢n+q2−1
z1,r1,s1,u1,v1≔QRationalCanonicalForm1⁡F,q,n
z1,r1,s1,u1,v1≔1q10,q5−q3+n⁢q4−q2+n,q5+n⁢n+1q4,n+q2−1q22⁢q3+n2⁢q4+n2⁢q+n⁢q2+n⁢n+q2−1q11⁢n+q2−1q10⁢n+q2−1q9⁢n+q2−1q8⁢n+q2−1q7⁢n+q2−1q6⁢n+q2−1q5⁢n+q2−1q4⁢n+q2−1q3⁢n+q2−1q⁢q2+n−1,1
z2,r2,s2,u2,v2≔QRationalCanonicalForm2⁡F,q,n
z2,r2,s2,u2,v2≔q18,n+q2−1q3⁢n+q2−1q12,q4+n⁢q5+n,q3+n⁢q4+n,q3+n−q2⁢q4−q2+n2⁢n+1q3⁢n+1q2⁢n+1q⁢n+1⁢n+q2−1q⁢q2+n−1⁢q5−q3+n
z3,r3,s3,u3,v3≔QRationalCanonicalForm3⁡F,q,n
z3,r3,s3,u3,v3≔q4,q5−q3+n⁢n+q2−1q12,q5+n⁢n+1q4,q3+n2⁢q4+n2⁢q+n⁢q2+n⁢n+q2−1q2,q3+n−q⁢q4−q2+n
z4,r4,s4,u4,v4≔QRationalCanonicalForm4⁡F,q,n
z4,r4,s4,u4,v4≔q12,q5−q3+n⁢n+q2−1q12,q4+n⁢q5+n,q3+n⁢q4+n⁢n+q2−1q2,n+1q3⁢n+1q2⁢n+1q⁢n+1⁢q3+n−q⁢q4−q2+n
Check the result from QRationalCanonicalForm[2].
Condition 1 is satisfied.
normal⁡F−z2⁢r2s2⁢subs⁡n=q⁢n,u2v2u2v2,gcdex⁡u2,v2,n
0,1
Condition 2 is satisfied.
QDispersion⁡r2,s2,q,n,QDispersion⁡s2,r2,q,n
FAIL,FAIL
Condition 3 is satisfied.
eval⁡u2,n=0≠0,normal⁡eval⁡v2,n=0≠0
q7≠0,q2⁢q2−17≠0
Condition 4 is satisfied.
gcdex⁡r2,u2⁢subs⁡n=q⁢n,v2,n,gcdex⁡s2,subs⁡n=q⁢n,u2⁢v2,n
1,1
Degrees of the kernel:
degree⁡r1,n,degree⁡r2,n,degree⁡r3,n,degree⁡r4,n
2,2,2,2
degree⁡s1,n,degree⁡s2,n,degree⁡s3,n,degree⁡s4,n
The degree of v1 is minimal:
degree⁡v1,n,degree⁡v2,n,degree⁡v3,n,degree⁡v4,n
0,11,2,6
The degree of u2 is minimal:
degree⁡u1,n,degree⁡u2,n,degree⁡u3,n,degree⁡u4,n
19,2,7,3
For i=3,4, the degree of the shell is minimal:
degree⁡u1,n+degree⁡v1,n,degree⁡u2,n+degree⁡v2,n,degree⁡u3,n+degree⁡v3,n,degree⁡u4,n+degree⁡v4,n
19,13,9,9
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Efficient Representations of (q-)Hypergeometric Terms and the Assignment Problem." Submitted.
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.
See Also
QDifferenceEquations[QDispersion]
QDifferenceEquations[QEfficientRepresentation]
QDifferenceEquations[QMultiplicativeDecomposition]
QDifferenceEquations[QPolynomialNormalForm]
Download Help Document