QDifferenceEquations
QSimpComb
simplification of expressions involving q-hypergeometric terms
QSimplify
Calling Sequence
Parameters
Description
Examples
References
QSimpComb(f)
QSimplify(f)
f
-
algebraic expression
The commands QSimpComb and QSimplify are for simplification of expressions involving q-hypergeometric terms. For a function f⁡qk, the main use of QSimpComb is for detecting if f⁡qk is a q-hypergeometric term in qk. That is, if f⁡qk+1f⁡qk is a rational function in qk (see IsQHypergeometricTerm). If the result is not a rational function, QSimplify returns in general a more compact answer.
This implementation is mainly based on the implementation by H. Boeing, W. Koepf. See the Reference Section.
with⁡QDifferenceEquations:
H≔q2−12q6n⁢QPochhammer⁡1−q5+q3,q,n⁢QPochhammer⁡1−q4+q2,q,n⁢QPochhammer⁡−1q2−1⁢q3,q,n⁢QPochhammer⁡−1q2,q,n⁢QPochhammer⁡−1q2−1⁢q12,q,n⁢QPochhammer⁡−1,q,nQPochhammer⁡−1q2−1⁢q2,q,n⁢QPochhammer⁡−1q5,q,n⁢QPochhammer⁡−1q4,q,n2⁢QPochhammer⁡−q4,q,n⁢QPochhammer⁡1−q2+1,q,n
H≔q2−12q6n⁢QPochhammer⁡1−q5+q3,q,n⁢QPochhammer⁡1−q4+q2,q,n⁢QPochhammer⁡−q3q2−1,q,n⁢QPochhammer⁡−1q2,q,n⁢QPochhammer⁡−q12q2−1,q,n⁢QPochhammer⁡−1,q,nQPochhammer⁡−q2q2−1,q,n⁢QPochhammer⁡−1q5,q,n⁢QPochhammer⁡−1q4,q,n2⁢QPochhammer⁡−q4,q,n⁢QPochhammer⁡1−q2+1,q,n
Apply QSimpComb to the consecutive ratio H⁡n+1H⁡n. If the result is a rational function in qn, then H is a q-hypergeometric term.
QSimpComb⁡subs⁡n=n+1,HH
q5−q3+qn⁢q2+qn⁢qn⁢q12+q2−1⁢1+qn⁢qn⁢q3+q2−1⁢q4−q2+qnq2⁢qn+q2−1⁢q2+qn−1⁢q4+qn2⁢1+qn⁢q4⁢q5+qn
IsQHypergeometricTerm⁡H,n,qn=N
true
f≔QPochhammer⁡a⁢q−k⁢n,q,n−QPochhammer⁡qa,q,k⁢nQPochhammer⁡qa,q,k⁢n−n⁢−an⁢qbinomial⁡n,2−k⁢n2
f≔QPochhammer⁡a⁢q−k⁢n,q,n−QPochhammer⁡qa,q,k⁢n⁢−an⁢qn2−k⁢n2QPochhammer⁡qa,q,k⁢n−n
QSimplify⁡f
0
f≔1QPochhammer⁡a,q,2⁢n⁢QPochhammer⁡a,q2,n⁢QPochhammer⁡a⁢q,q2,n
f≔QPochhammer⁡a,q2,n⁢QPochhammer⁡q⁢a,q2,nQPochhammer⁡a,q,2⁢n
QSimpComb⁡f
QPochhammer⁡a,q2,n⁢QPochhammer⁡q⁢a,q2,nQPochhammer⁡a,q,2⁢n
1
Boeing, H., and Koepf, W. "Algorithms for q-hypergeometric summation in computer algebra." Journal of Symbolic Computation. Vol. 11. (1999): 1-23.
See Also
QDifferenceEquations[IsQHypergeometricTerm]
QDifferenceEquations[QObjects]
Download Help Document