RegularQPochhammerForm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


QDifferenceEquations

  

RegularQPochhammerForm

  

construct the regular q-Pochhammer representation of a q-hypergeometric term

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

RegularQPochhammerForm(H, q, n)

Parameters

H

-

q-hypergeometric term of n

q

-

name used as the parameter q, usually q

n

-

variable

Description

• 

Let H be a q-hypergeometric term of q^n, R be the certificate of H, and n0 be an integer such that R has neither a pole nor a zero for all n0n. Let R factor into linear factors

Rzxa1...xarxb1....xbs

  

The RegularQPochhammerForm(H,q,n) command returns the multiplicative decomposition of the form Hqn0Cwnn0Pn where

PQPochhammer1a1,q,n...QPochhammer1ar,q,nQPochhammer1b1,q,n....QPochhammer1bs,q,n

w−1r+sza1...arb1....bs

Cqn2QPochhammer1b1,q,n0...QPochhammer1bs,q,n0qn02QPochhammer1a1,q,n0....QPochhammer1ar,q,n0

Examples

withQDifferenceEquations:

HProductqk+q2qk+1qk+q5q3qk+q4q2q3qk+q21q12qk+q21qk+q5qk+q42q4qk+1qk+q21q2qk+q21,k=0..n1

Hk=0n1qk+q2qk+1qk+q5q3qk+q4q2q3qk+q21q12qk+q21qk+q5qk+q42q4qk+1qk+q21q2qk+q21

(1)

RegularQPochhammerFormH,q,n

q212q6nQPochhammerq3q21,q,nQPochhammer1q4+q2,q,nQPochhammerq12q21,q,nQPochhammer1q5+q3,q,nQPochhammer−1,q,nQPochhammer1q2,q,nQPochhammerq2q21,q,nQPochhammerq4,q,nQPochhammer1q4,q,n2QPochhammer1q5,q,nQPochhammer1q2+1,q,n

(2)

See Also

QDifferenceEquations[QEfficientRepresentation]

QDifferenceEquations[QMultiplicativeDecomposition]

QDifferenceEquations[QRationalCanonicalForm]