QDifferenceEquations
RegularQPochhammerForm
construct the regular q-Pochhammer representation of a q-hypergeometric term
Calling Sequence
Parameters
Description
Examples
RegularQPochhammerForm(H, q, n)
H
-
q-hypergeometric term of n
q
name used as the parameter q, usually q
n
variable
Let H be a q-hypergeometric term of q^n, R be the certificate of H, and n0 be an integer such that R has neither a pole nor a zero for all n0≤n. Let R factor into linear factors
R≔z⁢x−a1⁢...⁢x−arx−b1⁢....⁢x−bs
The RegularQPochhammerForm(H,q,n) command returns the multiplicative decomposition of the form H⁡qn0⁢C⁢wn−n0⁢P⁡n where
P≔QPochhammer⁡1a1,q,n⁢...⁢QPochhammer⁡1ar,q,nQPochhammer⁡1b1,q,n⁢....⁢QPochhammer⁡1bs,q,n
w≔−1r+s⁢z⁢a1⁢...⁢arb1⁢....⁢bs
C≔qn2⁢QPochhammer⁡1b1,q,n0⁢...⁢QPochhammer⁡1bs,q,n0qn02⁢QPochhammer⁡1a1,q,n0⁢....⁢QPochhammer⁡1ar,q,n0
with⁡QDifferenceEquations:
H≔Product⁡qk+q2⁢qk+1⁢qk+q5−q3⁢qk+q4−q2⁢q3⁢qk+q2−1⁢q12⁢qk+q2−1qk+q5⁢qk+q42⁢q4⁢qk+1⁢qk+q2−1⁢q2⁢qk+q2−1,k=0..n−1
H≔∏k=0n−1⁡qk+q2⁢qk+1⁢qk+q5−q3⁢qk+q4−q2⁢q3⁢qk+q2−1⁢q12⁢qk+q2−1qk+q5⁢qk+q42⁢q4⁢qk+1⁢qk+q2−1⁢q2⁢qk+q2−1
RegularQPochhammerForm⁡H,q,n
q2−12q6n⁢QPochhammer⁡−q3q2−1,q,n⁢QPochhammer⁡1−q4+q2,q,n⁢QPochhammer⁡−q12q2−1,q,n⁢QPochhammer⁡1−q5+q3,q,n⁢QPochhammer⁡−1,q,n⁢QPochhammer⁡−1q2,q,nQPochhammer⁡−q2q2−1,q,n⁢QPochhammer⁡−q4,q,n⁢QPochhammer⁡−1q4,q,n2⁢QPochhammer⁡−1q5,q,n⁢QPochhammer⁡1−q2+1,q,n
See Also
QDifferenceEquations[QEfficientRepresentation]
QDifferenceEquations[QMultiplicativeDecomposition]
QDifferenceEquations[QRationalCanonicalForm]
Download Help Document