QDifferenceEquations
Zeilberger
perform Zeilberger's algorithm (q-difference case)
Calling Sequence
Parameters
Description
Examples
References
Zeilberger(T, n, k, q, Qn)
T
-
q-hypergeometric term in qn and qk
n
name
k
q
Qn
name; denote the q-shift operator with respect to qn
For a specified q-hypergeometric term T⁡qn,qk of qn and qk, the Zeilberger(T, n, k, q, Qn) calling sequence constructs for T⁡qn,qk a Z-pair L,G that consists of a linear q-difference operator with coefficients that are polynomials of N=qn
L=av⁡qn⁢Qnv+...+a1⁡qn⁢Qn+a0⁡qn
and a q-hypergeometric term G⁡qn,qk of qn and qk such that
L⁢o⁢T⁡qn,qk=G⁡qn,qk+1−G⁡qn,qk
Qn is the q-shift operator with respect to qn, defined by Qn⁡F⁡qn,qk=F⁡qn+1,qk.
By assigning values to the global variables _MINORDER and _MAXORDER, the algorithm is restricted to finding a Z-pair L,G for T⁡qn,qk such that the order of L is between _MINORDER and _MAXORDER (the default value of _MAXORDER is 6).
The output from the Zeilberger command is a list of two elements L,G representing the computed Z-pair L,G.
with⁡QDifferenceEquations:
T≔qn+k⁢QBinomial⁡n,k,q
Zpair≔Zeilberger⁡T,n,k,q,Qn:
Zpair1
Qn2+−q2−q⁢Qn−qn⁢q4+q3
Zpair2
−qn⁢q4⁢q⁢qn−1⁢−1+qk⁢qk⁢qn+k⁢QBinomial⁡n,k,q−q⁢qn+qk⁢−qn⁢q2+qk
T≔2⁢qk2QPochhammer⁡q,q,k⁢QPochhammer⁡q,q,n−k
−qn⁢q2+1⁢Qn2+−qn2⁢q3+qn⁢q2−q−1⁢Qn+q
2⁢qk2⁢qn2⁢q4⁢−1+qkQPochhammer⁡q,q,k⁢QPochhammer⁡q,q,n−k⁢−q⁢qn+qk⁢−qn⁢q2+qk
Petkovsek, M.; Wilf, H.; and Zeilberger, D. A=B. Wellesley, Massachusetts: A K Peters, Ltd., 1996.
See Also
SumTools[Hypergeometric][Zeilberger]
Download Help Document