RegularChains[ChainTools]
DahanSchostTransform
map a regular chain by the Dahan and Schost transform
Calling Sequence
Parameters
Description
Examples
References
DahanSchostTransform(rc, R)
rc
-
regular chain of R
R
polynomial ring
The command DahanSchostTransform(rc, R) returns the regular chain obtained by applying the Dahan and Schost transform to rc.
The output regular chain has the same saturated ideal as the input rc. Moreover, the size of the coefficients of the output regular chain is very likely to be much smaller than that of rc.
This function assumes that rc is zero-dimensional and normalized, and that the saturated ideal of rc is radical.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form DahanSchostTransform(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][DahanSchostTransform](..).
with⁡RegularChains:with⁡ChainTools:
R≔PolynomialRing⁡x,y,z
R≔polynomial_ring
sys≔5⁢y4−3,−20⁢x+y−z,−x5+y5−3⁢y−1
sys≔−20⁢x+y−z,5⁢y4−3,−x5+y5−3⁢y−1
dec≔Triangularize⁡sys,R,normalized=yes
dec≔regular_chain
map⁡Equations,dec,R
11474127946569256007468861967138822599454632253404776870051199476222619269004890144761853439484671057123097693465191381050813704562732917125293370932479130541598163953960078201654747916507320573574680356823040⁢x−1771260505008202862102854051702189834144507041921400912212854357946960933195335641858396501896935850288388698973423657024874890168951887006119520716403898588447265625000000000000⁢z19+6993494167255643877060419555161219397297718310661681373013610473433161675295215097739765468198629739368658992144459186504824936653303907728642932110182220458984375000000000000000⁢z18+46980330573720043696285723094038459435169014560960809457932826698816864853909365786661752359672134274602580990491031583381442373098978089863389116690573928381886816436810143422403125⁢z17−362457794998087226523064237197118238681455387434685379217170814307753153223785029557758914206492139656047158750881706208736371102082285270209948560334845112137055928302241429687500000⁢z16+1825588409831441292570286016853843732976447711290921201282663597873225040956392206905741146687704996955957543164892852708765201681735455663532400560561990184217739346093750000000000000⁢z15+15138417846066725118358222658899878896246722526651227781338839693046020627409354976198946514427454581361714047528896855158315263311055631123529796231583257599303710937500000000000000000⁢z14−44394335873903477558622382037619903399605543513019193984850811034401539767435244582975861827087564468519794770271434211676417079225209120663140736918184704321681411620260946061817664157500⁢z13−239889463831973885970439654459159240773157947028995584430781544269432684180568707791767576191787113033986469119189293532827387996841920408461551066623181822838810854143891280165251250000000⁢z12+2738339662798997128827712967353520807578712156161195412624338459316853569080754130154719452119622862823530609072130944805722667158059695598771740436061650119196713974446586975000000000000000⁢z11−15237133948658997778693395344596342126523231688102858941028295140149607477956051848066457333497202284356641427141996353739796250479018624174619989841534614074349477755996093750000000000000000⁢z10+48563913474106327770615609511108962756349408870293446119857242983280899281287041276597414703953142847110970543541965415369819771789164016371916892583484885932065222266474244223656870580763404750⁢z9+182770901475269211462030828375934181004032581754339209581456763239413822566355167569080400536438012882499416890307268474234594753941991910223913471336544588355841793697886482347774623132375000000⁢z8+309191296130950729973668595368021125635249693248658751381279239017170403224531631090451630403456902301090463541541208661015512101696917723097258264871336817986092045758275049045390250000000000000⁢z7−6838688396641645490945090868618366582490420637673970853279869471018348887091817749546675847593376908651767451450243404728169565283801174082247345442363224813502338696761842209062500000000000000000⁢z6−74815682380070752593065205631091355818115420146560706379886171073303776505335730603765529125626467971633284964641482528987570423158923499017031906462266550721041958679333491247172414080955401845651420⁢z5−154608045527569292338754337973797843824713701855230758768236174292780150592090630056630234512064066763987236066826571445077192641952424283276680662979283353386614928379571789390957015570270631450000000⁢z4−124695385819578642285275287975402015668994502200477065094640515598601115130175167063705343665239193213631330215705606292594773399242228508627801381881595789007869020418417852791444860110175000000000000⁢z3−66152659857188245320424888024222967738184293737891699176976594293187674688484864881423871033576765065422479234984449961643090211269389726039235842212801812250522818211946896210922615625000000000000000⁢z2+573598714920124956474610718803150703376812978417179178775576117319500000077857129232958889104193427114987500929833686714791341712743162700766075396541379832681132358445310329142895528887477470724804102079717⁢z+239787108649287987286424755607482454864690786827841184696976286133386057573817722098997859322480446751288360706756986017238407677469601203785469989972240351121714956603188344506951151541954650850823956500000,573706397328462800373443098356941129972731612670238843502559973811130963450244507238092671974233552856154884673259569052540685228136645856264668546623956527079908197698003910082737395825366028678734017841152⁢y−1771260505008202862102854051702189834144507041921400912212854357946960933195335641858396501896935850288388698973423657024874890168951887006119520716403898588447265625000000000000⁢z19+6993494167255643877060419555161219397297718310661681373013610473433161675295215097739765468198629739368658992144459186504824936653303907728642932110182220458984375000000000000000⁢z18+46980330573720043696285723094038459435169014560960809457932826698816864853909365786661752359672134274602580990491031583381442373098978089863389116690573928381886816436810143422403125⁢z17−362457794998087226523064237197118238681455387434685379217170814307753153223785029557758914206492139656047158750881706208736371102082285270209948560334845112137055928302241429687500000⁢z16+1825588409831441292570286016853843732976447711290921201282663597873225040956392206905741146687704996955957543164892852708765201681735455663532400560561990184217739346093750000000000000⁢z15+15138417846066725118358222658899878896246722526651227781338839693046020627409354976198946514427454581361714047528896855158315263311055631123529796231583257599303710937500000000000000000⁢z14−44394335873903477558622382037619903399605543513019193984850811034401539767435244582975861827087564468519794770271434211676417079225209120663140736918184704321681411620260946061817664157500⁢z13−239889463831973885970439654459159240773157947028995584430781544269432684180568707791767576191787113033986469119189293532827387996841920408461551066623181822838810854143891280165251250000000⁢z12+2738339662798997128827712967353520807578712156161195412624338459316853569080754130154719452119622862823530609072130944805722667158059695598771740436061650119196713974446586975000000000000000⁢z11−15237133948658997778693395344596342126523231688102858941028295140149607477956051848066457333497202284356641427141996353739796250479018624174619989841534614074349477755996093750000000000000000⁢z10+48563913474106327770615609511108962756349408870293446119857242983280899281287041276597414703953142847110970543541965415369819771789164016371916892583484885932065222266474244223656870580763404750⁢z9+182770901475269211462030828375934181004032581754339209581456763239413822566355167569080400536438012882499416890307268474234594753941991910223913471336544588355841793697886482347774623132375000000⁢z8+309191296130950729973668595368021125635249693248658751381279239017170403224531631090451630403456902301090463541541208661015512101696917723097258264871336817986092045758275049045390250000000000000⁢z7−6838688396641645490945090868618366582490420637673970853279869471018348887091817749546675847593376908651767451450243404728169565283801174082247345442363224813502338696761842209062500000000000000000⁢z6−74815682380070752593065205631091355818115420146560706379886171073303776505335730603765529125626467971633284964641482528987570423158923499017031906462266550721041958679333491247172414080955401845651420⁢z5−154608045527569292338754337973797843824713701855230758768236174292780150592090630056630234512064066763987236066826571445077192641952424283276680662979283353386614928379571789390957015570270631450000000⁢z4−124695385819578642285275287975402015668994502200477065094640515598601115130175167063705343665239193213631330215705606292594773399242228508627801381881595789007869020418417852791444860110175000000000000⁢z3−66152659857188245320424888024222967738184293737891699176976594293187674688484864881423871033576765065422479234984449961643090211269389726039235842212801812250522818211946896210922615625000000000000000⁢z2−107682408337843898832379553790426595918634253059664726983856491630963372387378005133782870040125741167383743425882337749343515393483155498593150082576694398775839252693580939841866937888557953929915761435⁢z+239787108649287987286424755607482454864690786827841184696976286133386057573817722098997859322480446751288360706756986017238407677469601203785469989972240351121714956603188344506951151541954650850823956500000,3125⁢z20−9375⁢z16−40000000000⁢z15−2015999988750⁢z12−1560000000000⁢z11+192000000000000000⁢z10−12165125356800006750⁢z8−14745602232000000000⁢z7−6528000000000000000⁢z6−409600000000000000000000⁢z5−16986908639233347839997975⁢z4−14155767152640302400000000⁢z3−5898238732800000000000000⁢z2−1228800000000000000000000⁢z−6195303619231982878732441600243
ds≔DahanSchostTransform⁡dec1,R
ds≔regular_chain
Equations⁡ds,R
625⁢z19−1500⁢z15−6000000000⁢z14−241919998650⁢z11−171600000000⁢z10+19200000000000000⁢z9−973210028544000540⁢z7−1032192156240000000⁢z6−391680000000000000⁢z5−20480000000000000000000⁢z4−679476345569333913599919⁢z3−424673014579209072000000⁢z2−117964774656000000000000⁢z−12288000000000000000000⁢x+100000000⁢z15+5040000000⁢z12+3900000000⁢z11−960000000000000⁢z10+60825613392000000⁢z8+73728005580000000⁢z7+32640000000000000⁢z6+3072000000000000000000⁢z5+127401871196163369600000⁢z4+106168275763200756000000⁢z3+44236793664000000000000⁢z2+9216000000000000000000⁢z+61953031096239274393631104000,3125⁢z19−7500⁢z15−30000000000⁢z14−1209599993250⁢z11−858000000000⁢z10+96000000000000000⁢z9−4866050142720002700⁢z7−5160960781200000000⁢z6−1958400000000000000⁢z5−102400000000000000000000⁢z4−3397381727846669567999595⁢z3−2123365072896045360000000⁢z2−589823873280000000000000⁢z−61440000000000000000000⁢y−1875⁢z16−302399995500⁢z12−312000000000⁢z11−1216513874880004050⁢z8−2211840892800000000⁢z7−1305600000000000000⁢z6−849339791770341311998380⁢z4−1415574503424181440000000⁢z3−884735493120000000000000⁢z2−245760000000000000000000⁢z−509608055439369331200243,3125⁢z20−9375⁢z16−40000000000⁢z15−2015999988750⁢z12−1560000000000⁢z11+192000000000000000⁢z10−12165125356800006750⁢z8−14745602232000000000⁢z7−6528000000000000000⁢z6−409600000000000000000000⁢z5−16986908639233347839997975⁢z4−14155767152640302400000000⁢z3−5898238732800000000000000⁢z2−1228800000000000000000000⁢z−6195303619231982878732441600243
EqualSaturatedIdeals⁡dec1,ds,R
true
Dahan, X., and Schost, E. "Sharp Estimates for Triangular Sets." In Proc. ISSAC 2004, Santander, Spain, ACM Press, 2004.
See Also
ChainTools
EqualSaturatedIdeals
Equations
IsStronglyNormalized
IsZeroDimensional
PolynomialRing
RegularChains
Triangularize
Download Help Document