Complement - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


RegularChains

  

ConstructibleSetTools[Complement]

  

compute the complement of a constructible set

  

SemiAlgebraicSetTools[Complement]

  

compute the complement of a semi-algebraic set

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

Complement(cs, R)

Complement(lrsas, R)

Parameters

cs

-

constructible set

lrsas

-

list of regular semi-algebraic systems

R

-

polynomial ring

Description

• 

The command Complement(cs, R) returns the complement of the constructible set cs in the affine space associated with R. If K is the algebraic closure of the coefficient field of R and n is the number of variables in R, then this affine space is Kn.  The polynomial ring may have characteristic zero or a prime characteristic.

• 

The command Complement(lrsas, R) returns the complement of the semi-algebraic set represented by lrsas (see RealTriangularize for this representation). The polynomial ring must have characteristic zero. The empty semi-algebraic set is encoded by the empty list.

• 

The empty constructible set represents the empty set of Kn.

• 

This command is available once RegularChains[ConstructibleSetTools] submodule or RegularChains[SemiAlgebraicSetTools] submodule have been loaded. It can always be accessed through one of the following long forms: RegularChains[ConstructibleSetTools][Complement] or RegularChains[SemiAlgebraicSetTools][Complement].

Examples

withRegularChains:

withChainTools:

withConstructibleSetTools:

First define the polynomial ring R and two polynomials of R.

RPolynomialRingx,a,b,c,d

Rpolynomial_ring

(1)

Fax+c

Fax+c

(2)

Gbx+d

Gbx+d

(3)

The goal is to determine for which parameter values of a, b, c and d the generic linear equations F and G have solutions. Project the variety defined by F and G onto the parameter space.

csProjectionF,G,4,R

csconstructible_set

(4)

Infocs,R

dacb,d,b,b,d,a,c,d,1,a,b,c,d,1

(5)

Therefore, four regular systems encode this projection in the parameter space. The complement of cs should be those points that make the linear equations have no common solutions.

com_csComplementcs,R

com_csconstructible_set

(6)

Infocom_cs,R

,dabc,d,d,c,b,a,b,d,a,b,d,c

(7)

If you call Complement twice, you should retrieve the constructible set cs.

com_com_csComplementcom_cs,R

com_com_csconstructible_set

(8)

IsContainedcs,com_com_cs,RandIsContainedcom_com_cs,cs,R

true

(9)

Semi-algebraic case

RPolynomialRinga,b,c:

S1a2caa=0&comma;0<ac

S1a2caa=0&comma;0<ac

(10)

outRealTriangularizeS1&comma;R

outregular_semi_algebraic_system&comma;regular_semi_algebraic_system

(11)

complComplementout&comma;R

complregular_semi_algebraic_system&comma;regular_semi_algebraic_system&comma;regular_semi_algebraic_system

(12)

expecteda2caa0&comma;ac0

expecteda2caa0&comma;ac0

(13)

expectedmaptopRealTriangularizet&comma;R&comma;expected

expectedregular_semi_algebraic_system&comma;regular_semi_algebraic_system&comma;regular_semi_algebraic_system

(14)

Verify compl = expected as set of points by Difference.

Differencecompl&comma;expected&comma;R

(15)

Differenceexpected&comma;compl&comma;R

(16)

References

  

Chen, C.; Golubitsky, O.; Lemaire, F.; Moreno Maza, M.; and Pan, W. "Comprehensive Triangular Decomposition". Proc. CASC 2007, LNCS, Vol. 4770: 73-101. Springer, 2007.

  

Chen, C.; Davenport, J.-D.; Moreno Maza, M.; Xia, B.; and Xiao, R. "Computing with semi-algebraic sets represented by triangular decomposition". Proceedings of 2011 International Symposium on Symbolic and Algebraic Computation (ISSAC 2011), ACM Press, pp. 75--82, 2011.

Compatibility

• 

The RegularChains[SemiAlgebraicSetTools][Complement] command was introduced in Maple 16.

• 

The lrsas parameter was introduced in Maple 16.

• 

For more information on Maple 16 changes, see Updates in Maple 16.

See Also

ConstructibleSet

ConstructibleSetTools

Difference

Intersection

Projection

RealTriangularize

RegularChains

SemiAlgebraicSetTools

Union