SubresultantChainSpecializationCube - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


RegularChains[FastArithmeticTools]

  

SubresultantChainSpecializationCube

  

evaluation of the subresultant chain of two polynomials

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

SubresultantChainSpecializationCube(f1, f2, v, R, theoption)

Parameters

R

-

polynomial ring

f1

-

polynomial of R

f2

-

polynomial of R

v

-

variable of R

theoption

-

integer, choice of two strategies

Description

• 

The call SubresultantChainSpecializationCube(f1, f2, v, R, theoption) returns a data-structure which stores images of the subresultant chain of f1 and f2 specialized at enough good values in order to interpolate the subresultants of f1 and f2.

• 

f1 and f2 must have main variable v and  degreef2,vdegreef1,v must hold.

• 

Moreover R must have a prime characteristic p such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f1 and f2 are, the larger must be e such that 2e divides p1.  If the degree of  f1 or f2 is too large, then an error is raised.

• 

This data-structure can be used to compute the resultant of f1 and f2 with respect to v, by means of the command  ResultantBySpecializationCube.

• 

This data-structure can also be used to compute a GCD of f1 and f2 modulo the saturated ideal of a regular chain, by means of the command RegularGcdBySpecializationCube.

• 

If theoption is 0 then fast interpolation based on subproduct tree is used. Otherwise a multi-dimensional-FFT-based approach is tried, since it is generally faster and uses less memory. If this latter failed then finally, the subproduct tree technique is used.

• 

By good specialization value, one means here a point at which the initials of f1 and f2 do not vanish.

• 

The reason why the multi-dimensional-FFT-based specialization scheme can fail is because it is hard in general to find good specialization values that are powers of primitive roots of unity. In some exceptional cases, the subproduct tree approach can also fail finding good specialization values; if this happens an error is raised.

Examples

withRegularChains:

withFastArithmeticTools:

withChainTools:

Define a ring of polynomials.

p962592769;varsx,a,b,c,d;RPolynomialRingvars,p

p962592769

varsx,a,b,c,d

Rpolynomial_ring

(1)

Define two polynomials of R.

f1x2axbmodp

f1x2+962592768ax+962592768b

(2)

f2x2cxdmodp

f2x2+962592768cx+962592768d

(3)

Compute images of the subresultant chain of sufficiently many points in order to interpolate. Multi-dimensional TFT is used to evaluate and interpolate since 1 is passed as fifth argument

SCubeSubresultantChainSpecializationCubef1,f2,x,R,1

SCubesubresultant_chain_specialization_cube

(4)

Interpolate the resultant from the SCube

r2ResultantBySpecializationCubef1,f2,x,SCube,R

r2a2b3d2+962592768a2b2d3+962592767ab3cd2+2ab2cd3+d2c2b3+962592768d3c2b2+962592768a3b3+a3b2d+2a2b3c+962592767a2b2cd+962592768a2bcd2+a2cd3+962592768ab3c2+ab2c2d+2abc2d2+962592767ac2d3+962592768d2c3b+d3c3+a3bc+962592768a3cd+962592767a2bc2+2a2c2d+abc3+962592768ac3d

(5)

Define a regular chain with r2. Note that r2 is not required to be square free.

rcChainr2,EmptyR,R

rcregular_chain

(6)

Compute a regular GCD of f1 and f2 modulo rc

g2RegularGcdBySpecializationCubef1,f2,rc,SCube,R

g2962592768ab2d+ab2x+abd2+962592768ad2x+cdb2+962592768b2cx+962592768d2cb+cd2x+962592768ba2+a2x+abc+acd+962592767acx+962592768dc2+c2x,regular_chain,bx2+962592768dx2+962592768ab+ax+cd+962592768cx,regular_chain,bx2+962592768dx2+962592768ab+ax+cd+962592768cx,regular_chain

(7)

See Also

RegularChains

RegularGcdBySpecializationCube

ResultantBySpecializationCube