RegularChains
IsRegular
check if a polynomial is regular modulo a regular chain
Calling Sequence
Parameters
Description
Examples
IsRegular(p, rc, R)
p
-
polynomial of R
rc
regular chain of R
R
polynomial ring
The command IsRegular(in_p, in_rc, R) returns true if and only if p is regular modulo rc, that is if and only if p is not a zero-divisor modulo the saturated ideal of rc.
This command is part of the RegularChains package, so it can be used in the form IsRegular(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[IsRegular](..).
with⁡RegularChains:with⁡ChainTools:
R≔PolynomialRing⁡x,y,z
R≔polynomial_ring
T≔Empty⁡R
T≔regular_chain
T≔Chain⁡z+1⁢z+2,y2+z,x−z⁢x−y,T,R
Equations⁡T,R
x2+−y−z⁢x+z⁢y,y2+z,z2+3⁢z+2
p≔z+1⁢x3+5
IsRegular⁡p,T,R
false
regl,zdl≔op⁡Regularize⁡p,T,R
regl,zdl≔regular_chain,regular_chain,regular_chain,regular_chain
map⁡Equations,zdl,R
x−1,y−1,z+1,x+1,y−1,z+1,x+1,y+1,z+1
The fact that the list zdl is not empty means that there are cases, modulo which, p is zero. This is clear from the definition of p and rc.
q≔x+y+z
IsRegular⁡q,T,R
true
Regularize⁡q,T,R
T,
Inverse⁡q,T,R
−235⁢x⁢y⁢z2+94⁢x⁢z3−515⁢x⁢y⁢z+112⁢x⁢z2−206⁢z⁢x,504,regular_chain,−235⁢x⁢y⁢z2+94⁢x⁢z3−515⁢x⁢y⁢z+112⁢x⁢z2−206⁢z⁢x,504,regular_chain,−235⁢x⁢y⁢z2+94⁢x⁢z3+470⁢y2⁢z2+282⁢y⁢z3−188⁢z4−515⁢x⁢y⁢z+112⁢x⁢z2+1030⁢y2⁢z+806⁢y⁢z2−224⁢z3−206⁢z⁢x+412⁢z⁢y+412⁢z2,504,regular_chain,−235⁢x⁢y⁢z2+94⁢x⁢z3+470⁢y2⁢z2+282⁢y⁢z3−188⁢z4−515⁢x⁢y⁢z+112⁢x⁢z2+1030⁢y2⁢z+806⁢y⁢z2−224⁢z3−206⁢z⁢x+412⁢z⁢y+412⁢z2,504,regular_chain,
Since q is regular with respect to T and since every variable q is algebraic with respect to T, we can compute the inverse of q modulo T.
r≔z−x
r≔−x+z
IsRegular⁡r,T,R
Regularize⁡r,T,R
regular_chain,regular_chain,regular_chain,regular_chain
For each case where r is regular modulo rc, we can compute its inverse.
Inverse⁡r,T,R
−1,2,regular_chain,y+z,2,regular_chain,regular_chain,regular_chain
See Also
Chain
ChainTools
Empty
Equations
Inverse
PolynomialRing
Regularize
RegularizeDim0
RegularizeInitial
Download Help Document