SignalProcessing/ResponseSpectrum - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : SignalProcessing/ResponseSpectrum

SignalProcessing

  

ResponseSpectrum

  

plot the response spectrum of a signal

 

Calling Sequence

Parameters

Options

Description

Examples

References

Compatibility

Calling Sequence

ResponseSpectrum(data, timeStep, dT, maxT)

ResponseSpectrum(dataT, dataA, timeStep, dT, maxT)

Parameters

data

-

rtable(numeric) : 2-D rtable where column 1 is time and column 2 is acceleration for the time-acceleration history

dataT, dataA

-

rtable(numeric) : 1-D rtables containing, respectively, the time and acceleration for the time-acceleration history

timeStep

-

numeric : positive time step of input time-acceleration data and output velocity/displacement-time history

dT

-

numeric : positive time step of period in output spectrum

maxT

-

numeric : positive maximum period in output spectrum

Options

• 

zeta : numeric : Non-negative damping ratio, with default 0.05.

• 

beta : numeric : First non-negative constant which determines the discretization scheme for the equation of motion, with default 0.25.

• 

gamma : numeric : Second non-negative constant which determines the discretization scheme for the equation of motion, with default 0.5.

• 

periodfrequency : identical(period, frequency) : One of the names period (default) or frequency.

• 

xscale : identical(log, linear) : One of the names log or linear (default).

• 

yscale : identical(log, linear) : One of the names log or linear (default).

• 

output : The type of output. The supported options are:

– 

absoluteaccelerationdata: Vector, of datatype float[8], containing the absolute acceleration data.

– 

absoluteaccelerationplot: Plot of the absolute acceleration versus period.

– 

accelerationdata: Vector, of datatype float[8], containing the acceleration data.

– 

accelerationplot: Plot of the acceleration versus time.

– 

displacementdata: Vector, of datatype float[8], containing the displacement data.

– 

displacementplot: Plot of the displacement versus time.

– 

perioddata: Vector, of datatype float[8], containing the period data.

– 

pseudoaccelerationdata: Vector, of datatype float[8], containing the pseudospectral acceleration data.

– 

pseudoaccelerationplot: Plot of the pseudospectral acceleration versus period.

– 

pseudovelocitydata: Vector, of datatype float[8], containing the pseudospectral velocity data.

– 

pseudovelocityplot: Plot of the pseudospectral velocity versus period.

– 

relativedisplacementdata: Vector, of datatype float[8], containing the relative displacement response spectrum data.

– 

relativedisplacementplot: Plot of the relative displacement response spectrum versus period.

– 

relativevelocitydata: Vector, of datatype float[8], containing the relative velocity response spectrum data.

– 

relativevelocityplot: Plot of the relative velocity response spectrum versus period.

– 

timedata: float[8] Vector of the time data.

– 

velocitydata: Vector, of datatype float[8], containing the velocity data.

– 

velocityplot: Plot of the velocity versus time.

– 

record: Returns a record with the previous options. This is the default.

– 

list of any of the above options: Returns an expression sequence with the corresponding outputs, in the same order.

Description

• 

A response spectrum is a plot of how a structure or system responds to varying frequencies of ground motion or input excitation. It is commonly used in structural engineering and earthquake engineering to assess the potential response of a structure to seismic events.

• 

A response spectrum is generated by calculating the maximum response of a structure to different frequencies of ground motion. An acceleration time history is used to perturb a single degree of freedom harmonic oscillator. Typically period is plotted on the x-axis against acceleration, velocity or position on the y-axis.

• 

This procedure computes the response spectrum of an input accelerogram (time-acceleration history). It numerically solves the differential equation for a harmonic oscillator with one degree of freedom.

• 

The parameters β, γ, and ζ are the same as those described in the Newmark-beta Method.

Examples

withSignalProcessing:

datafileFileTools:-JoinPathkerneloptsdatadir,datasets,el-centro_NS.txt:

dataImportMatrixdatafile,delimiter= :

resultsResponseSpectrumdata,0.02,0.01,5,ζ=0.02,β=0.25,γ=0.5:

The primary content of the record returned by ResponseSpectrum are a number of charts:

results:-absoluteaccelerationplot

results:-relativevelocityplot

results:-relativedisplacementplot

results:-pseudovelocityplot

results:-pseudoaccelerationplot

results:-displacementplot

results:-velocityplot

results:-accelerationplot

Additional raw data used to generate these plots are available in other slots of the record.

results:-perioddata

results:-absoluteaccelerationdata

results:-relativevelocitydata

results:-relativedisplacementdata

results:-pseudovelocitydata

results:-pseudoaccelerationdata

results:-velocitydata

results:-displacementdata

References

  

Aeran, Ashish and Hirpa G. Lemu. "Time Integration Schemes in Dynamic Problems: Effect of Damping on Numerical Stability and Accuracy". International Workshop of Advanced Manufacturing and Automation (IWAMA), pp. 213-220. Atlantis Press, 2016.

  

"Newmark-beta Method", Wikipedia. https://en.wikipedia.org/wiki/Newmark-beta_method

  

"Response Spectrum", Wikipedia. https://en.wikipedia.org/wiki/Response_spectrum

Compatibility

• 

The SignalProcessing[ResponseSpectrum] command was introduced in Maple 2024.

• 

For more information on Maple 2024 changes, see Updates in Maple 2024.

See Also

SignalProcessing