RootMeanSquare - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


SignalProcessing

  

RootMeanSquare

  

calculate the root mean square of a signal

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

RootMeanSquare( data )

Parameters

data

-

rtable or list of data

Description

• 

The RootMeanSquare command takes an rtable or list of data and returns the Root Mean Square (RMS). When A is a Vector with n elements:

RootMeanSquareA=i=1nAi2n

• 

The input is converted to a 1-D Vector of either float[8] or complex[8] datatype, and an error will be thrown if this is not possible. For this reason, it is most efficient for the input to already be an rtable having the appropriate datatype.

• 

The RootMeanSquare command is not thread safe.

Examples

withSignalProcessing:

Simple Examples

XArray1,2I,3

X12I3

(1)

RootMeanSquareX

2.16024689946928694

(2)

Y3sqrt2,4sqrt2

Y32,42

(3)

RootMeanSquareY

5.

(4)

ZMatrix5,10,15,20+I

Z5−101520+I

(5)

RootMeanSquareZ

13.7021896060447208

(6)

Parseval's Theorem

• 

Parseval's Theorem shows that the root mean square of the Discrete Fourier Transform (DFT) of a signal is the same as that of the original signal. For example:

ALinearAlgebra:-RandomVector5,datatype=complex8

A−94.58.I12.7.I21.53.I40.25.I43.+97.I

(7)

BVectorcolumnDFTA

B9.8386991009990720.5718253929981I−108.101349850469+32.8995037690910I−68.936178759761269.2123797669952I−38.078365733228469.3476788839996I−4.913194642520873.45956242008582I

(8)

rms__ARootMeanSquareA

rms__A76.3229978446863555

(9)

rms__BRootMeanSquareB

rms__B76.3229978446863555

(10)
• 

We can also compare the original signal with the Inverse Discrete Fourier Transform (IDFT) of its DFT:

CVectorcolumnInverseDFTB

C−94.000000000000058.I12.00000000000007.00000000000001I21.000000000000053.I40.000000000000025.0000000000000I43.+97.0000000000000I

(11)

RootMeanSquareAC

1.93451702870987411×10−14

(12)

Compatibility

• 

The SignalProcessing[RootMeanSquare] command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

• 

The SignalProcessing[RootMeanSquare] command was updated in Maple 2021.

See Also

SignalProcessing

SignalProcessing[Norm]

SignalProcessing[RelativeRootMeanSquareError]

SignalProcessing[RootMeanSquareError]