SignalProcessing
RootMeanSquare
calculate the root mean square of a signal
Calling Sequence
Parameters
Description
Examples
Compatibility
RootMeanSquare( data )
data
-
rtable or list of data
The RootMeanSquare command takes an rtable or list of data and returns the Root Mean Square (RMS). When A is a Vector with n elements:
RootMeanSquare⁡A=∑i=1n⁡Ai2n
The input is converted to a 1-D Vector of either float[8] or complex[8] datatype, and an error will be thrown if this is not possible. For this reason, it is most efficient for the input to already be an rtable having the appropriate datatype.
The RootMeanSquare command is not thread safe.
with⁡SignalProcessing:
Simple Examples
X≔Array⁡1,2⁢I,3
X≔12⁢I3
RootMeanSquare⁡X
2.16024689946928694
Y≔3⁢sqrt⁡2,4⁢sqrt⁡2
Y≔3⁢2,4⁢2
RootMeanSquare⁡Y
5.
Z≔Matrix⁡5,−10,15,20+I
Z≔5−101520+I
RootMeanSquare⁡Z
13.7021896060447208
Parseval's Theorem
Parseval's Theorem shows that the root mean square of the Discrete Fourier Transform (DFT) of a signal is the same as that of the original signal. For example:
A≔LinearAlgebra:-RandomVector⁡5,datatype=complex8
A≔−94.−58.⁢I12.−7.⁢I21.−53.⁢I40.−25.⁢I43.+97.⁢I
B≔Vectorcolumn⁡DFT⁡A
B≔9.83869910099907−20.5718253929981⁢I−108.101349850469+32.8995037690910⁢I−68.9361787597612−69.2123797669952⁢I−38.0783657332284−69.3476788839996⁢I−4.91319464252087−3.45956242008582⁢I
rms__A≔RootMeanSquare⁡A
rms__A≔76.3229978446863555
rms__B≔RootMeanSquare⁡B
rms__B≔76.3229978446863555
We can also compare the original signal with the Inverse Discrete Fourier Transform (IDFT) of its DFT:
C≔Vectorcolumn⁡InverseDFT⁡B
C≔−94.0000000000000−58.⁢I12.0000000000000−7.00000000000001⁢I21.0000000000000−53.⁢I40.0000000000000−25.0000000000000⁢I43.+97.0000000000000⁢I
RootMeanSquare⁡A−C
1.93451702870987411×10−14
The SignalProcessing[RootMeanSquare] command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
The SignalProcessing[RootMeanSquare] command was updated in Maple 2021.
See Also
SignalProcessing[Norm]
SignalProcessing[RelativeRootMeanSquareError]
SignalProcessing[RootMeanSquareError]
Download Help Document